Cargando…

Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels

Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Di, Maharjan, Sushila, Kuang, Xiao, Wang, Zixuan, Mille, Luis S., Tao, Ming, Yu, Peng, Cao, Xia, Lian, Liming, Lv, Li, He, Jacqueline Jialu, Tang, Guosheng, Yuk, Hyunwoo, Ozaki, C. Keith, Zhao, Xuanhe, Zhang, Yu Shrike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604524/
https://www.ncbi.nlm.nih.gov/pubmed/36288300
http://dx.doi.org/10.1126/sciadv.abq6900
_version_ 1784817835691737088
author Wang, Di
Maharjan, Sushila
Kuang, Xiao
Wang, Zixuan
Mille, Luis S.
Tao, Ming
Yu, Peng
Cao, Xia
Lian, Liming
Lv, Li
He, Jacqueline Jialu
Tang, Guosheng
Yuk, Hyunwoo
Ozaki, C. Keith
Zhao, Xuanhe
Zhang, Yu Shrike
author_facet Wang, Di
Maharjan, Sushila
Kuang, Xiao
Wang, Zixuan
Mille, Luis S.
Tao, Ming
Yu, Peng
Cao, Xia
Lian, Liming
Lv, Li
He, Jacqueline Jialu
Tang, Guosheng
Yuk, Hyunwoo
Ozaki, C. Keith
Zhao, Xuanhe
Zhang, Yu Shrike
author_sort Wang, Di
collection PubMed
description Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme–cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future.
format Online
Article
Text
id pubmed-9604524
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-96045242022-11-04 Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels Wang, Di Maharjan, Sushila Kuang, Xiao Wang, Zixuan Mille, Luis S. Tao, Ming Yu, Peng Cao, Xia Lian, Liming Lv, Li He, Jacqueline Jialu Tang, Guosheng Yuk, Hyunwoo Ozaki, C. Keith Zhao, Xuanhe Zhang, Yu Shrike Sci Adv Biomedicine and Life Sciences Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme–cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future. American Association for the Advancement of Science 2022-10-26 /pmc/articles/PMC9604524/ /pubmed/36288300 http://dx.doi.org/10.1126/sciadv.abq6900 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Wang, Di
Maharjan, Sushila
Kuang, Xiao
Wang, Zixuan
Mille, Luis S.
Tao, Ming
Yu, Peng
Cao, Xia
Lian, Liming
Lv, Li
He, Jacqueline Jialu
Tang, Guosheng
Yuk, Hyunwoo
Ozaki, C. Keith
Zhao, Xuanhe
Zhang, Yu Shrike
Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title_full Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title_fullStr Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title_full_unstemmed Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title_short Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
title_sort microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604524/
https://www.ncbi.nlm.nih.gov/pubmed/36288300
http://dx.doi.org/10.1126/sciadv.abq6900
work_keys_str_mv AT wangdi microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT maharjansushila microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT kuangxiao microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT wangzixuan microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT milleluiss microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT taoming microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT yupeng microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT caoxia microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT lianliming microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT lvli microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT hejacquelinejialu microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT tangguosheng microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT yukhyunwoo microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT ozakickeith microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT zhaoxuanhe microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels
AT zhangyushrike microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels