Cargando…
Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels
Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreat...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604524/ https://www.ncbi.nlm.nih.gov/pubmed/36288300 http://dx.doi.org/10.1126/sciadv.abq6900 |
_version_ | 1784817835691737088 |
---|---|
author | Wang, Di Maharjan, Sushila Kuang, Xiao Wang, Zixuan Mille, Luis S. Tao, Ming Yu, Peng Cao, Xia Lian, Liming Lv, Li He, Jacqueline Jialu Tang, Guosheng Yuk, Hyunwoo Ozaki, C. Keith Zhao, Xuanhe Zhang, Yu Shrike |
author_facet | Wang, Di Maharjan, Sushila Kuang, Xiao Wang, Zixuan Mille, Luis S. Tao, Ming Yu, Peng Cao, Xia Lian, Liming Lv, Li He, Jacqueline Jialu Tang, Guosheng Yuk, Hyunwoo Ozaki, C. Keith Zhao, Xuanhe Zhang, Yu Shrike |
author_sort | Wang, Di |
collection | PubMed |
description | Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme–cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future. |
format | Online Article Text |
id | pubmed-9604524 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96045242022-11-04 Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels Wang, Di Maharjan, Sushila Kuang, Xiao Wang, Zixuan Mille, Luis S. Tao, Ming Yu, Peng Cao, Xia Lian, Liming Lv, Li He, Jacqueline Jialu Tang, Guosheng Yuk, Hyunwoo Ozaki, C. Keith Zhao, Xuanhe Zhang, Yu Shrike Sci Adv Biomedicine and Life Sciences Three-dimensional (3D) bioprinting of vascular tissues that are mechanically and functionally comparable to their native counterparts is an unmet challenge. Here, we developed a tough double-network hydrogel (bio)ink for microfluidic (bio)printing of mono- and dual-layered hollow conduits to recreate vein- and artery-like tissues, respectively. The tough hydrogel consisted of energy-dissipative ionically cross-linked alginate and elastic enzyme–cross-linked gelatin. The 3D bioprinted venous and arterial conduits exhibited key functionalities of respective vessels including relevant mechanical properties, perfusability, barrier performance, expressions of specific markers, and susceptibility to severe acute respiratory syndrome coronavirus 2 pseudo-viral infection. Notably, the arterial conduits revealed physiological vasoconstriction and vasodilatation responses. We further explored the feasibility of these conduits for vascular anastomosis. Together, our study presents biofabrication of mechanically and functionally relevant vascular conduits, showcasing their potentials as vascular models for disease studies in vitro and as grafts for vascular surgeries in vivo, possibly serving broad biomedical applications in the future. American Association for the Advancement of Science 2022-10-26 /pmc/articles/PMC9604524/ /pubmed/36288300 http://dx.doi.org/10.1126/sciadv.abq6900 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Wang, Di Maharjan, Sushila Kuang, Xiao Wang, Zixuan Mille, Luis S. Tao, Ming Yu, Peng Cao, Xia Lian, Liming Lv, Li He, Jacqueline Jialu Tang, Guosheng Yuk, Hyunwoo Ozaki, C. Keith Zhao, Xuanhe Zhang, Yu Shrike Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title | Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title_full | Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title_fullStr | Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title_full_unstemmed | Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title_short | Microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
title_sort | microfluidic bioprinting of tough hydrogel-based vascular conduits for functional blood vessels |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604524/ https://www.ncbi.nlm.nih.gov/pubmed/36288300 http://dx.doi.org/10.1126/sciadv.abq6900 |
work_keys_str_mv | AT wangdi microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT maharjansushila microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT kuangxiao microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT wangzixuan microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT milleluiss microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT taoming microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT yupeng microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT caoxia microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT lianliming microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT lvli microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT hejacquelinejialu microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT tangguosheng microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT yukhyunwoo microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT ozakickeith microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT zhaoxuanhe microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels AT zhangyushrike microfluidicbioprintingoftoughhydrogelbasedvascularconduitsforfunctionalbloodvessels |