Cargando…

Using an Ultrasound Tissue Phantom Model for Hybrid Training of Deep Learning Models for Shrapnel Detection

Tissue phantoms are important for medical research to reduce the use of animal or human tissue when testing or troubleshooting new devices or technology. Development of machine-learning detection tools that rely on large ultrasound imaging data sets can potentially be streamlined with high quality p...

Descripción completa

Detalles Bibliográficos
Autores principales: Hernandez-Torres, Sofia I., Boice, Emily N., Snider, Eric J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604600/
https://www.ncbi.nlm.nih.gov/pubmed/36286364
http://dx.doi.org/10.3390/jimaging8100270
Descripción
Sumario:Tissue phantoms are important for medical research to reduce the use of animal or human tissue when testing or troubleshooting new devices or technology. Development of machine-learning detection tools that rely on large ultrasound imaging data sets can potentially be streamlined with high quality phantoms that closely mimic important features of biological tissue. Here, we demonstrate how an ultrasound-compliant tissue phantom comprised of multiple layers of gelatin to mimic bone, fat, and muscle tissue types can be used for machine-learning training. This tissue phantom has a heterogeneous composition to introduce tissue level complexity and subject variability in the tissue phantom. Various shrapnel types were inserted into the phantom for ultrasound imaging to supplement swine shrapnel image sets captured for applications such as deep learning algorithms. With a previously developed shrapnel detection algorithm, blind swine test image accuracy reached more than 95% accuracy when training was comprised of 75% tissue phantom images, with the rest being swine images. For comparison, a conventional MobileNetv2 deep learning model was trained with the same training image set and achieved over 90% accuracy in swine predictions. Overall, the tissue phantom demonstrated high performance for developing deep learning models for ultrasound image classification.