Cargando…
Using an Ultrasound Tissue Phantom Model for Hybrid Training of Deep Learning Models for Shrapnel Detection
Tissue phantoms are important for medical research to reduce the use of animal or human tissue when testing or troubleshooting new devices or technology. Development of machine-learning detection tools that rely on large ultrasound imaging data sets can potentially be streamlined with high quality p...
Autores principales: | Hernandez-Torres, Sofia I., Boice, Emily N., Snider, Eric J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604600/ https://www.ncbi.nlm.nih.gov/pubmed/36286364 http://dx.doi.org/10.3390/jimaging8100270 |
Ejemplares similares
-
Comparison of Ultrasound Image Classifier Deep Learning Algorithms for Shrapnel Detection
por: Boice, Emily N., et al.
Publicado: (2022) -
An image classification deep-learning algorithm for shrapnel detection from ultrasound images
por: Snider, Eric J., et al.
Publicado: (2022) -
Training Ultrasound Image Classification Deep-Learning Algorithms for Pneumothorax Detection Using a Synthetic Tissue Phantom Apparatus
por: Boice, Emily N., et al.
Publicado: (2022) -
Evaluation of an Object Detection Algorithm for Shrapnel and Development of a Triage Tool to Determine Injury Severity
por: Snider, Eric J., et al.
Publicado: (2022) -
Performance Comparison of Object Detection Networks for Shrapnel Identification in Ultrasound Images
por: Hernandez-Torres, Sofia I., et al.
Publicado: (2023)