Cargando…

Infrared plasmons propagate through a hyperbolic nodal metal

Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Yinming, Sternbach, Aaron J., Kim, Brian S. Y., Rikhter, Andrey A., Xu, Xinyi, De Giovannini, Umberto, Jing, Ran, Chae, Sang Hoon, Sun, Zhiyuan, Lee, Seng Huat, Zhu, Yanglin, Mao, Zhiqiang, Hone, James C., Queiroz, Raquel, Millis, Andrew J., Schuck, P. James, Rubio, Angel, Fogler, Michael M., Basov, Dmitri N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604610/
https://www.ncbi.nlm.nih.gov/pubmed/36288317
http://dx.doi.org/10.1126/sciadv.add6169
_version_ 1784817857276674048
author Shao, Yinming
Sternbach, Aaron J.
Kim, Brian S. Y.
Rikhter, Andrey A.
Xu, Xinyi
De Giovannini, Umberto
Jing, Ran
Chae, Sang Hoon
Sun, Zhiyuan
Lee, Seng Huat
Zhu, Yanglin
Mao, Zhiqiang
Hone, James C.
Queiroz, Raquel
Millis, Andrew J.
Schuck, P. James
Rubio, Angel
Fogler, Michael M.
Basov, Dmitri N.
author_facet Shao, Yinming
Sternbach, Aaron J.
Kim, Brian S. Y.
Rikhter, Andrey A.
Xu, Xinyi
De Giovannini, Umberto
Jing, Ran
Chae, Sang Hoon
Sun, Zhiyuan
Lee, Seng Huat
Zhu, Yanglin
Mao, Zhiqiang
Hone, James C.
Queiroz, Raquel
Millis, Andrew J.
Schuck, P. James
Rubio, Angel
Fogler, Michael M.
Basov, Dmitri N.
author_sort Shao, Yinming
collection PubMed
description Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.
format Online
Article
Text
id pubmed-9604610
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-96046102022-11-04 Infrared plasmons propagate through a hyperbolic nodal metal Shao, Yinming Sternbach, Aaron J. Kim, Brian S. Y. Rikhter, Andrey A. Xu, Xinyi De Giovannini, Umberto Jing, Ran Chae, Sang Hoon Sun, Zhiyuan Lee, Seng Huat Zhu, Yanglin Mao, Zhiqiang Hone, James C. Queiroz, Raquel Millis, Andrew J. Schuck, P. James Rubio, Angel Fogler, Michael M. Basov, Dmitri N. Sci Adv Physical and Materials Sciences Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal. American Association for the Advancement of Science 2022-10-26 /pmc/articles/PMC9604610/ /pubmed/36288317 http://dx.doi.org/10.1126/sciadv.add6169 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Shao, Yinming
Sternbach, Aaron J.
Kim, Brian S. Y.
Rikhter, Andrey A.
Xu, Xinyi
De Giovannini, Umberto
Jing, Ran
Chae, Sang Hoon
Sun, Zhiyuan
Lee, Seng Huat
Zhu, Yanglin
Mao, Zhiqiang
Hone, James C.
Queiroz, Raquel
Millis, Andrew J.
Schuck, P. James
Rubio, Angel
Fogler, Michael M.
Basov, Dmitri N.
Infrared plasmons propagate through a hyperbolic nodal metal
title Infrared plasmons propagate through a hyperbolic nodal metal
title_full Infrared plasmons propagate through a hyperbolic nodal metal
title_fullStr Infrared plasmons propagate through a hyperbolic nodal metal
title_full_unstemmed Infrared plasmons propagate through a hyperbolic nodal metal
title_short Infrared plasmons propagate through a hyperbolic nodal metal
title_sort infrared plasmons propagate through a hyperbolic nodal metal
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604610/
https://www.ncbi.nlm.nih.gov/pubmed/36288317
http://dx.doi.org/10.1126/sciadv.add6169
work_keys_str_mv AT shaoyinming infraredplasmonspropagatethroughahyperbolicnodalmetal
AT sternbachaaronj infraredplasmonspropagatethroughahyperbolicnodalmetal
AT kimbriansy infraredplasmonspropagatethroughahyperbolicnodalmetal
AT rikhterandreya infraredplasmonspropagatethroughahyperbolicnodalmetal
AT xuxinyi infraredplasmonspropagatethroughahyperbolicnodalmetal
AT degiovanniniumberto infraredplasmonspropagatethroughahyperbolicnodalmetal
AT jingran infraredplasmonspropagatethroughahyperbolicnodalmetal
AT chaesanghoon infraredplasmonspropagatethroughahyperbolicnodalmetal
AT sunzhiyuan infraredplasmonspropagatethroughahyperbolicnodalmetal
AT leesenghuat infraredplasmonspropagatethroughahyperbolicnodalmetal
AT zhuyanglin infraredplasmonspropagatethroughahyperbolicnodalmetal
AT maozhiqiang infraredplasmonspropagatethroughahyperbolicnodalmetal
AT honejamesc infraredplasmonspropagatethroughahyperbolicnodalmetal
AT queirozraquel infraredplasmonspropagatethroughahyperbolicnodalmetal
AT millisandrewj infraredplasmonspropagatethroughahyperbolicnodalmetal
AT schuckpjames infraredplasmonspropagatethroughahyperbolicnodalmetal
AT rubioangel infraredplasmonspropagatethroughahyperbolicnodalmetal
AT foglermichaelm infraredplasmonspropagatethroughahyperbolicnodalmetal
AT basovdmitrin infraredplasmonspropagatethroughahyperbolicnodalmetal