Cargando…
Infrared plasmons propagate through a hyperbolic nodal metal
Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604610/ https://www.ncbi.nlm.nih.gov/pubmed/36288317 http://dx.doi.org/10.1126/sciadv.add6169 |
_version_ | 1784817857276674048 |
---|---|
author | Shao, Yinming Sternbach, Aaron J. Kim, Brian S. Y. Rikhter, Andrey A. Xu, Xinyi De Giovannini, Umberto Jing, Ran Chae, Sang Hoon Sun, Zhiyuan Lee, Seng Huat Zhu, Yanglin Mao, Zhiqiang Hone, James C. Queiroz, Raquel Millis, Andrew J. Schuck, P. James Rubio, Angel Fogler, Michael M. Basov, Dmitri N. |
author_facet | Shao, Yinming Sternbach, Aaron J. Kim, Brian S. Y. Rikhter, Andrey A. Xu, Xinyi De Giovannini, Umberto Jing, Ran Chae, Sang Hoon Sun, Zhiyuan Lee, Seng Huat Zhu, Yanglin Mao, Zhiqiang Hone, James C. Queiroz, Raquel Millis, Andrew J. Schuck, P. James Rubio, Angel Fogler, Michael M. Basov, Dmitri N. |
author_sort | Shao, Yinming |
collection | PubMed |
description | Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal. |
format | Online Article Text |
id | pubmed-9604610 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96046102022-11-04 Infrared plasmons propagate through a hyperbolic nodal metal Shao, Yinming Sternbach, Aaron J. Kim, Brian S. Y. Rikhter, Andrey A. Xu, Xinyi De Giovannini, Umberto Jing, Ran Chae, Sang Hoon Sun, Zhiyuan Lee, Seng Huat Zhu, Yanglin Mao, Zhiqiang Hone, James C. Queiroz, Raquel Millis, Andrew J. Schuck, P. James Rubio, Angel Fogler, Michael M. Basov, Dmitri N. Sci Adv Physical and Materials Sciences Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal. American Association for the Advancement of Science 2022-10-26 /pmc/articles/PMC9604610/ /pubmed/36288317 http://dx.doi.org/10.1126/sciadv.add6169 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Shao, Yinming Sternbach, Aaron J. Kim, Brian S. Y. Rikhter, Andrey A. Xu, Xinyi De Giovannini, Umberto Jing, Ran Chae, Sang Hoon Sun, Zhiyuan Lee, Seng Huat Zhu, Yanglin Mao, Zhiqiang Hone, James C. Queiroz, Raquel Millis, Andrew J. Schuck, P. James Rubio, Angel Fogler, Michael M. Basov, Dmitri N. Infrared plasmons propagate through a hyperbolic nodal metal |
title | Infrared plasmons propagate through a hyperbolic nodal metal |
title_full | Infrared plasmons propagate through a hyperbolic nodal metal |
title_fullStr | Infrared plasmons propagate through a hyperbolic nodal metal |
title_full_unstemmed | Infrared plasmons propagate through a hyperbolic nodal metal |
title_short | Infrared plasmons propagate through a hyperbolic nodal metal |
title_sort | infrared plasmons propagate through a hyperbolic nodal metal |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604610/ https://www.ncbi.nlm.nih.gov/pubmed/36288317 http://dx.doi.org/10.1126/sciadv.add6169 |
work_keys_str_mv | AT shaoyinming infraredplasmonspropagatethroughahyperbolicnodalmetal AT sternbachaaronj infraredplasmonspropagatethroughahyperbolicnodalmetal AT kimbriansy infraredplasmonspropagatethroughahyperbolicnodalmetal AT rikhterandreya infraredplasmonspropagatethroughahyperbolicnodalmetal AT xuxinyi infraredplasmonspropagatethroughahyperbolicnodalmetal AT degiovanniniumberto infraredplasmonspropagatethroughahyperbolicnodalmetal AT jingran infraredplasmonspropagatethroughahyperbolicnodalmetal AT chaesanghoon infraredplasmonspropagatethroughahyperbolicnodalmetal AT sunzhiyuan infraredplasmonspropagatethroughahyperbolicnodalmetal AT leesenghuat infraredplasmonspropagatethroughahyperbolicnodalmetal AT zhuyanglin infraredplasmonspropagatethroughahyperbolicnodalmetal AT maozhiqiang infraredplasmonspropagatethroughahyperbolicnodalmetal AT honejamesc infraredplasmonspropagatethroughahyperbolicnodalmetal AT queirozraquel infraredplasmonspropagatethroughahyperbolicnodalmetal AT millisandrewj infraredplasmonspropagatethroughahyperbolicnodalmetal AT schuckpjames infraredplasmonspropagatethroughahyperbolicnodalmetal AT rubioangel infraredplasmonspropagatethroughahyperbolicnodalmetal AT foglermichaelm infraredplasmonspropagatethroughahyperbolicnodalmetal AT basovdmitrin infraredplasmonspropagatethroughahyperbolicnodalmetal |