Cargando…
Predicting Health Risks of Adult Asthmatics Susceptible to Indoor Air Quality Using Improved Logistic and Quantile Regression Models
The increasing global patterns for asthma disease and its associated fiscal burden to healthcare systems demand a change to healthcare processes and the way asthma risks are managed. Patient-centered health care systems equipped with advanced sensing technologies can empower patients to participate...
Autores principales: | Bae, Wan D., Alkobaisi, Shayma, Horak, Matthew, Park, Choon-Sik, Kim, Sungroul, Davidson, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604638/ https://www.ncbi.nlm.nih.gov/pubmed/36295066 http://dx.doi.org/10.3390/life12101631 |
Ejemplares similares
-
Performance improvement of machine learning techniques predicting the association of exacerbation of peak expiratory flow ratio with short term exposure level to indoor air quality using adult asthmatics clustered data
por: Bae, Wan D., et al.
Publicado: (2021) -
The trilemma of innovation, logistics performance, and environmental quality in 25 topmost logistics countries: A quantile regression evidence
por: Magazzino, Cosimo, et al.
Publicado: (2021) -
Association between the Ratio of FEV(1) to FVC and the Exposure Level to Air Pollution in Neversmoking Adult Refractory Asthmatics Using Data Clustered by Patient in the Soonchunhyang Asthma Cohort Database
por: Yu, Sol, et al.
Publicado: (2018) -
Quantile regression
por: Koenker, Roger
Publicado: (2005) -
How Air Quality Affect Health Industry Stock Returns: New Evidence From the Quantile-on-Quantile Regression
por: Liu, Lu, et al.
Publicado: (2021)