Cargando…
Effect of Anisotropic Electrical Conductivity Induced by Fiber Orientation on Ablation Characteristics of Pulsed Field Ablation in Atrial Fibrillation Treatment: A Computational Study
Pulsed field ablation (PFA) is a promising new ablation modality for the treatment of atrial fibrillation (AF); however, the effect of fiber orientation on the ablation characteristics of PFA in AF treatment is still unclear, which is likely an essential factor in influencing the ablation characteri...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604654/ https://www.ncbi.nlm.nih.gov/pubmed/36286271 http://dx.doi.org/10.3390/jcdd9100319 |
Sumario: | Pulsed field ablation (PFA) is a promising new ablation modality for the treatment of atrial fibrillation (AF); however, the effect of fiber orientation on the ablation characteristics of PFA in AF treatment is still unclear, which is likely an essential factor in influencing the ablation characteristics. This study constructed an anatomy-based left atrium (LA) model incorporating fiber orientation and selected various electrical conductivity and ablation targets to investigate the effect of anisotropic electrical conductivity (AC), compared with isotropic electrical conductivity (IC), on the ablation characteristics of PFA in AF treatment. The results show that the percentage differences in the size of the surface ablation area between AC and IC are greater than 73.71%; the maximum difference in the size of the ablation isosurface between AC and IC at different locations in the atrial wall is 3.65 mm (X-axis), 3.65 mm (Z-axis), and 4.03 mm (X-axis), respectively; and the percentage differences in the size of the ablation volume are greater than 6.9%. Under the condition of the pulse, the amplitude is 1000 V, the total PFA duration is 1 s, and the pulse train interval is 198.4 ms; the differences in the temperature increase between AC and IC in LA are less than 2.46 °C. Hence, this study suggests that in further exploration of the computational study of PFA in AF treatment using the same or similar conditions as those used here (myocardial electrical conductivity, pulse parameters, and electric field intensity damage threshold), to obtain more accurate computational results, it is necessary to adopt AC rather than IC to investigate the size of the surface ablation area, the size of the ablation isosurface, or the size of the ablation volume generated by PFA in LA. Moreover, if only investigating the temperature increase generated by PFA in LA, adopting IC instead of AC for simplifying the model construction process is reasonable. |
---|