Cargando…
Application of Machine Learning to Improve Appropriateness of Treatment in an Orthopaedic Setting of Personalized Medicine
The rise of personalized medicine and its remarkable advancements have revealed new requirements for the availability of appropriate medical decision-making models. Computer science is an area that plays an essential role in the field of personalized medicine, where one of the goals is to provide al...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604727/ https://www.ncbi.nlm.nih.gov/pubmed/36294845 http://dx.doi.org/10.3390/jpm12101706 |
Sumario: | The rise of personalized medicine and its remarkable advancements have revealed new requirements for the availability of appropriate medical decision-making models. Computer science is an area that plays an essential role in the field of personalized medicine, where one of the goals is to provide algorithms and tools to extrapolate knowledge and improve the decision-support process. The minimum clinically important difference (MCID) is the smallest change in PROM scores that patients perceive as meaningful. Treatment that does not achieve the minimum level of improvement is considered inappropriate as well as a potential waste of resources. Using the MCID threshold to identify patients who fail to achieve the minimum change in PROM that results in a meaningful outcome may aid in pre-surgical shared decision-making. The decision tree algorithm is a method for extracting valuable information and providing further meaningful information to the domain expert that supports the decision-making. In the present study, different tools based on machine learning were developed. On the one hand, we compared three XGBoost models to predict the non-achievement of the MCID at six months post-operation in the SF-12 physical score. The prediction score threshold was set to 0.75 to provide three decision-making areas on the basis of the high confidence (HC) intervals; the minority class was re-balanced by weighting the positive class to penalize the loss function (XGBoost cost-sensitive), oversampling the minority class (XGBoost with SMOTE), and re-sampling the negative class (XGBoost with undersampling). On the other hand, we modeled the data through a decision tree (assessment tree), based on different complexity levels, to identify the hidden pattern and to provide a new way to understand possible relationships between the gathered features and the several outcomes. The results showed that all the proposed models were effective as binary classifiers, as they showed moderate predictive performance both regarding the minority or positive class (i.e., our targeted patients, those who will not benefit from surgery) and the negative class. The decision tree visualization can be exploited during the patient assessment status to better understand if those patients will benefit or not from the medical intervention. Both of these tools can come in handy for increasing knowledge about the patient’s psychophysical state and for creating an increasingly specialized assessment of the individual patient. |
---|