Cargando…
Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging
Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604806/ https://www.ncbi.nlm.nih.gov/pubmed/36294787 http://dx.doi.org/10.3390/jpm12101650 |
_version_ | 1784817907235028992 |
---|---|
author | Bharate, Gahininath Y. Qin, Haibo Fang, Jun |
author_facet | Bharate, Gahininath Y. Qin, Haibo Fang, Jun |
author_sort | Bharate, Gahininath Y. |
collection | PubMed |
description | Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugates showed the nanosized micelle formation through dynamic light scattering (DLS) with discrete distributions having mean particle sizes of 135.3 nm, and 190.9 nm for SMA-AF, and SMA-Rho, respectively. The apparent molecular weight of the micelle was evaluated using Sephadex G-100 gel chromatography and it was found that the 49.3 kDa, and 28.7 kDa for SMA-AF, and SMA-Rho, respectively. Moreover, the biodistribution study showed the selective accumulation of the SMA-dye conjugates in the tumor of mice. Taken together, the SMA-dye conjugated micelles appear in high concentrations in the tumor by utilizing the enhanced permeability and retention (EPR) effect of the tumor-targeted delivery. These results indicate that SMA-dye conjugates have the advanced potential as macromolecular fluorescent probes for microtumor imaging by means of a photodynamic diagnosis. |
format | Online Article Text |
id | pubmed-9604806 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96048062022-10-27 Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging Bharate, Gahininath Y. Qin, Haibo Fang, Jun J Pers Med Article Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugates showed the nanosized micelle formation through dynamic light scattering (DLS) with discrete distributions having mean particle sizes of 135.3 nm, and 190.9 nm for SMA-AF, and SMA-Rho, respectively. The apparent molecular weight of the micelle was evaluated using Sephadex G-100 gel chromatography and it was found that the 49.3 kDa, and 28.7 kDa for SMA-AF, and SMA-Rho, respectively. Moreover, the biodistribution study showed the selective accumulation of the SMA-dye conjugates in the tumor of mice. Taken together, the SMA-dye conjugated micelles appear in high concentrations in the tumor by utilizing the enhanced permeability and retention (EPR) effect of the tumor-targeted delivery. These results indicate that SMA-dye conjugates have the advanced potential as macromolecular fluorescent probes for microtumor imaging by means of a photodynamic diagnosis. MDPI 2022-10-04 /pmc/articles/PMC9604806/ /pubmed/36294787 http://dx.doi.org/10.3390/jpm12101650 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bharate, Gahininath Y. Qin, Haibo Fang, Jun Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title | Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title_full | Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title_fullStr | Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title_full_unstemmed | Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title_short | Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging |
title_sort | poly(styrene-co-maleic acid)-conjugated 6-aminofluorescein and rhodamine micelle as macromolecular fluorescent probes for micro-tumors detection and imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604806/ https://www.ncbi.nlm.nih.gov/pubmed/36294787 http://dx.doi.org/10.3390/jpm12101650 |
work_keys_str_mv | AT bharategahininathy polystyrenecomaleicacidconjugated6aminofluoresceinandrhodaminemicelleasmacromolecularfluorescentprobesformicrotumorsdetectionandimaging AT qinhaibo polystyrenecomaleicacidconjugated6aminofluoresceinandrhodaminemicelleasmacromolecularfluorescentprobesformicrotumorsdetectionandimaging AT fangjun polystyrenecomaleicacidconjugated6aminofluoresceinandrhodaminemicelleasmacromolecularfluorescentprobesformicrotumorsdetectionandimaging |