Cargando…
Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network
In the 21st century, numerous numerical calculation techniques have been discovered and used in several fields of science and technology. The purpose of this study was to use an artificial neural network (ANN) to forecast the compressive strength of waste-based concretes. The specimens studied inclu...
Autores principales: | Amar, Mouhamadou, Benzerzour, Mahfoud, Zentar, Rachid, Abriak, Nor-Edine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604846/ https://www.ncbi.nlm.nih.gov/pubmed/36295113 http://dx.doi.org/10.3390/ma15207045 |
Ejemplares similares
-
Designing Efficient Flash-Calcined Sediment-Based Ecobinders
por: Amar, Mouhamadou, et al.
Publicado: (2022) -
The Influence of External Sulfate Attack on the Durability of Reinforced Mortars in the Presence of Calcined River Sediments
por: Benkabouche, Ali, et al.
Publicado: (2023) -
Assessment of Dynamic Surface Leaching of Monolithic Polymer Mortars Comprised of Wastes
por: Maherzi, Walid, et al.
Publicado: (2023) -
Managing the Heat Release of Calcium Sulfoaluminate Cement by Modifying the Ye’elimite Content
por: Kleib, Joelle, et al.
Publicado: (2023) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019)