Cargando…

Bacillus velezensis TSA32-1 as a Promising Agent for Biocontrol of Plant Pathogenic Fungi

The use of synthetic fungicides has caused major problems such as soil and water pollution and negatively affects non-target species. Microbial biocontrol agents are needed for crop disease management to reduce agrochemical use. Bacillus and related genera produce secondary metabolites with agricult...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Jung-Ae, Song, Jeong-Sup, Kim, Pyoung Il, Kim, Dae-Hyuk, Kim, Yangseon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604864/
https://www.ncbi.nlm.nih.gov/pubmed/36294618
http://dx.doi.org/10.3390/jof8101053
Descripción
Sumario:The use of synthetic fungicides has caused major problems such as soil and water pollution and negatively affects non-target species. Microbial biocontrol agents are needed for crop disease management to reduce agrochemical use. Bacillus and related genera produce secondary metabolites with agricultural applications, such as the pathogen-control agent Bacillus velezensis. We isolated B. velezensis TSA32-1 from soil and identified its characteristics by sequencing its 16S rRNA. B. velezensis TSA32-1 showed enzyme activity and antimicrobial effects against phytopathogenic fungi by inhibiting the growth of Fusarium graminearum, F. fujikuroi, Alternatia alternate, and Diaporthe actinidiae. Additionally, B. velezensis TSA32-1 protected diseases in corn and pepper seeds caused by F. graminearum and Pythium ultimum. The complete genome of B. velezensis TSA32-1 was 4.05 Mb with a G+C content of 46.3 mol % and possessed the bacillaene biosynthesis cluster, a polyketide that inhibits protein biosynthesis. We also detected a surfactin synthesis cluster, known as non-ribosomal peptide synthetases, which biosynthesizes the antibacterial substance lipopeptide. Surfactin, and fengycin family compounds, secondary metabolites known as key factors in biological control, also detected B. velezensis TSA32-1 which shows potential as a biocontrol agent for controlling plant pathogens in agriculture.