Cargando…

Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer

A surface plasmon polariton (SPP) is an excitation resulting from the coupling of light to a surface charge oscillation at a metal-dielectric interface. The excitation and detection of SPPs is foundational to the operating mechanism of a number of important technologies, most of which require SPP ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Marquis, Colin D., McCarley, Lindze M., Pollock, Amy L., Cutcher, Acamaro S., Cannella, Max T., Smith, Tierra L., Larsen, Michael B., Peden, Brandon M., Johnson, Brad L., Leger, Janelle M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604954/
https://www.ncbi.nlm.nih.gov/pubmed/36288347
http://dx.doi.org/10.1371/journal.pone.0276522
_version_ 1784817945107496960
author Marquis, Colin D.
McCarley, Lindze M.
Pollock, Amy L.
Cutcher, Acamaro S.
Cannella, Max T.
Smith, Tierra L.
Larsen, Michael B.
Peden, Brandon M.
Johnson, Brad L.
Leger, Janelle M.
author_facet Marquis, Colin D.
McCarley, Lindze M.
Pollock, Amy L.
Cutcher, Acamaro S.
Cannella, Max T.
Smith, Tierra L.
Larsen, Michael B.
Peden, Brandon M.
Johnson, Brad L.
Leger, Janelle M.
author_sort Marquis, Colin D.
collection PubMed
description A surface plasmon polariton (SPP) is an excitation resulting from the coupling of light to a surface charge oscillation at a metal-dielectric interface. The excitation and detection of SPPs is foundational to the operating mechanism of a number of important technologies, most of which require SPP excitation via direct reflectance, commonly achieved via Attenuated Total Reflection (ATR) using the Kretschmann configuration. As a result, the accessible modes are fundamentally high-loss “leaky modes,” presenting a critical performance barrier. Recently, our group provided the first demonstration of “forbidden,” or guided-wave plasmon polariton modes (GW-PPMs), collective modes of a MIM structure with oscillatory electric field amplitude in the central insulator layer with up to an order of magnitude larger propagation lengths than those of traditional SPPs. However, in that work, GW-PPMs were accessed by indirect reflectance using Otto configuration ATR, making them of limited applied relevance. In this paper, we demonstrate a technique for direct reflectance excitation and detection of GW-PPMs. Specifically, we replace the air gap used in traditional Otto ATR with a low refractive index polymer coupling layer, mirroring a technique previously demonstrated to access Long-Range Surface Plasmon Polariton modes. We fit experimental ATR data using a robust theoretical model to confirm the character of the modes, as well as to explore the potential of this approach to enable advantageous propagation lengths. The ability to excite GW-PPMs using a device configuration that does not require an air gap could potentially enable transformative performance enhancements in a number of critical technologies.
format Online
Article
Text
id pubmed-9604954
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-96049542022-10-27 Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer Marquis, Colin D. McCarley, Lindze M. Pollock, Amy L. Cutcher, Acamaro S. Cannella, Max T. Smith, Tierra L. Larsen, Michael B. Peden, Brandon M. Johnson, Brad L. Leger, Janelle M. PLoS One Research Article A surface plasmon polariton (SPP) is an excitation resulting from the coupling of light to a surface charge oscillation at a metal-dielectric interface. The excitation and detection of SPPs is foundational to the operating mechanism of a number of important technologies, most of which require SPP excitation via direct reflectance, commonly achieved via Attenuated Total Reflection (ATR) using the Kretschmann configuration. As a result, the accessible modes are fundamentally high-loss “leaky modes,” presenting a critical performance barrier. Recently, our group provided the first demonstration of “forbidden,” or guided-wave plasmon polariton modes (GW-PPMs), collective modes of a MIM structure with oscillatory electric field amplitude in the central insulator layer with up to an order of magnitude larger propagation lengths than those of traditional SPPs. However, in that work, GW-PPMs were accessed by indirect reflectance using Otto configuration ATR, making them of limited applied relevance. In this paper, we demonstrate a technique for direct reflectance excitation and detection of GW-PPMs. Specifically, we replace the air gap used in traditional Otto ATR with a low refractive index polymer coupling layer, mirroring a technique previously demonstrated to access Long-Range Surface Plasmon Polariton modes. We fit experimental ATR data using a robust theoretical model to confirm the character of the modes, as well as to explore the potential of this approach to enable advantageous propagation lengths. The ability to excite GW-PPMs using a device configuration that does not require an air gap could potentially enable transformative performance enhancements in a number of critical technologies. Public Library of Science 2022-10-26 /pmc/articles/PMC9604954/ /pubmed/36288347 http://dx.doi.org/10.1371/journal.pone.0276522 Text en © 2022 Marquis et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Marquis, Colin D.
McCarley, Lindze M.
Pollock, Amy L.
Cutcher, Acamaro S.
Cannella, Max T.
Smith, Tierra L.
Larsen, Michael B.
Peden, Brandon M.
Johnson, Brad L.
Leger, Janelle M.
Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title_full Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title_fullStr Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title_full_unstemmed Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title_short Excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
title_sort excitation of “forbidden” guided-wave plasmon polariton modes via direct reflectance using a low refractive index polymer coupling layer
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604954/
https://www.ncbi.nlm.nih.gov/pubmed/36288347
http://dx.doi.org/10.1371/journal.pone.0276522
work_keys_str_mv AT marquiscolind excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT mccarleylindzem excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT pollockamyl excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT cutcheracamaros excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT cannellamaxt excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT smithtierral excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT larsenmichaelb excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT pedenbrandonm excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT johnsonbradl excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer
AT legerjanellem excitationofforbiddenguidedwaveplasmonpolaritonmodesviadirectreflectanceusingalowrefractiveindexpolymercouplinglayer