Cargando…
Machine learning predicts the short-term requirement for invasive ventilation among Australian critically ill COVID-19 patients
OBJECTIVE(S): To use machine learning (ML) to predict short-term requirements for invasive ventilation in patients with COVID-19 admitted to Australian intensive care units (ICUs). DESIGN: A machine learning study within a national ICU COVID-19 registry in Australia. PARTICIPANTS: Adult patients who...
Autores principales: | Karri, Roshan, Chen, Yi-Ping Phoebe, Burrell, Aidan J. C., Penny-Dimri, Jahan C., Broadley, Tessa, Trapani, Tony, Deane, Adam M., Udy, Andrew A., Plummer, Mark P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9604987/ https://www.ncbi.nlm.nih.gov/pubmed/36288359 http://dx.doi.org/10.1371/journal.pone.0276509 |
Ejemplares similares
-
Smoking in critically ill patients with COVID-19: the Australian experience
por: Plummer, Mark P., et al.
Publicado: (2023) -
Diabetes mellitus, glycaemic control, and severe COVID-19 in the Australian critical care setting: A nested cohort study
por: Plummer, Mark P., et al.
Publicado: (2023) -
Nosocomial infections amongst critically ill COVID-19 patients in Australia
por: Ramanan, Mahesh, et al.
Publicado: (2021) -
Rapid Translation of COVID-19 Preprint Data into Critical Care Practice
por: Burrell, Aidan J. C., et al.
Publicado: (2021) -
Comparison of Critical Care Occupancy and Outcomes of Critically Ill Patients during the 2020 COVID-19 Winter Surge and 2009 H1N1 Influenza Pandemic in Australia
por: Serpa Neto, Ary, et al.
Publicado: (2021)