Cargando…
A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605133/ https://www.ncbi.nlm.nih.gov/pubmed/36294878 http://dx.doi.org/10.3390/jpm12101739 |
_version_ | 1784817989600673792 |
---|---|
author | Knoedler, Leonard Miragall, Maximilian Kauke-Navarro, Martin Obed, Doha Bauer, Maximilian Tißler, Patrick Prantl, Lukas Machens, Hans-Guenther Broer, Peter Niclas Baecher, Helena Panayi, Adriana C. Knoedler, Samuel Kehrer, Andreas |
author_facet | Knoedler, Leonard Miragall, Maximilian Kauke-Navarro, Martin Obed, Doha Bauer, Maximilian Tißler, Patrick Prantl, Lukas Machens, Hans-Guenther Broer, Peter Niclas Baecher, Helena Panayi, Adriana C. Knoedler, Samuel Kehrer, Andreas |
author_sort | Knoedler, Leonard |
collection | PubMed |
description | Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient) in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length. Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides highly accurate automated grading of FP patient images. In combination with our application, the algorithm may facilitate the FP surgeon’s clinical workflow. |
format | Online Article Text |
id | pubmed-9605133 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96051332022-10-27 A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy Knoedler, Leonard Miragall, Maximilian Kauke-Navarro, Martin Obed, Doha Bauer, Maximilian Tißler, Patrick Prantl, Lukas Machens, Hans-Guenther Broer, Peter Niclas Baecher, Helena Panayi, Adriana C. Knoedler, Samuel Kehrer, Andreas J Pers Med Article Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient) in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length. Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides highly accurate automated grading of FP patient images. In combination with our application, the algorithm may facilitate the FP surgeon’s clinical workflow. MDPI 2022-10-19 /pmc/articles/PMC9605133/ /pubmed/36294878 http://dx.doi.org/10.3390/jpm12101739 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Knoedler, Leonard Miragall, Maximilian Kauke-Navarro, Martin Obed, Doha Bauer, Maximilian Tißler, Patrick Prantl, Lukas Machens, Hans-Guenther Broer, Peter Niclas Baecher, Helena Panayi, Adriana C. Knoedler, Samuel Kehrer, Andreas A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title | A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title_full | A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title_fullStr | A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title_full_unstemmed | A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title_short | A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy |
title_sort | ready-to-use grading tool for facial palsy examiners—automated grading system in facial palsy patients made easy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605133/ https://www.ncbi.nlm.nih.gov/pubmed/36294878 http://dx.doi.org/10.3390/jpm12101739 |
work_keys_str_mv | AT knoedlerleonard areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT miragallmaximilian areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT kaukenavarromartin areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT obeddoha areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT bauermaximilian areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT tißlerpatrick areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT prantllukas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT machenshansguenther areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT broerpeterniclas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT baecherhelena areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT panayiadrianac areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT knoedlersamuel areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT kehrerandreas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT knoedlerleonard readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT miragallmaximilian readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT kaukenavarromartin readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT obeddoha readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT bauermaximilian readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT tißlerpatrick readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT prantllukas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT machenshansguenther readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT broerpeterniclas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT baecherhelena readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT panayiadrianac readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT knoedlersamuel readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy AT kehrerandreas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy |