Cargando…

A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy

Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (...

Descripción completa

Detalles Bibliográficos
Autores principales: Knoedler, Leonard, Miragall, Maximilian, Kauke-Navarro, Martin, Obed, Doha, Bauer, Maximilian, Tißler, Patrick, Prantl, Lukas, Machens, Hans-Guenther, Broer, Peter Niclas, Baecher, Helena, Panayi, Adriana C., Knoedler, Samuel, Kehrer, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605133/
https://www.ncbi.nlm.nih.gov/pubmed/36294878
http://dx.doi.org/10.3390/jpm12101739
_version_ 1784817989600673792
author Knoedler, Leonard
Miragall, Maximilian
Kauke-Navarro, Martin
Obed, Doha
Bauer, Maximilian
Tißler, Patrick
Prantl, Lukas
Machens, Hans-Guenther
Broer, Peter Niclas
Baecher, Helena
Panayi, Adriana C.
Knoedler, Samuel
Kehrer, Andreas
author_facet Knoedler, Leonard
Miragall, Maximilian
Kauke-Navarro, Martin
Obed, Doha
Bauer, Maximilian
Tißler, Patrick
Prantl, Lukas
Machens, Hans-Guenther
Broer, Peter Niclas
Baecher, Helena
Panayi, Adriana C.
Knoedler, Samuel
Kehrer, Andreas
author_sort Knoedler, Leonard
collection PubMed
description Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient) in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length. Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides highly accurate automated grading of FP patient images. In combination with our application, the algorithm may facilitate the FP surgeon’s clinical workflow.
format Online
Article
Text
id pubmed-9605133
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96051332022-10-27 A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy Knoedler, Leonard Miragall, Maximilian Kauke-Navarro, Martin Obed, Doha Bauer, Maximilian Tißler, Patrick Prantl, Lukas Machens, Hans-Guenther Broer, Peter Niclas Baecher, Helena Panayi, Adriana C. Knoedler, Samuel Kehrer, Andreas J Pers Med Article Background: The grading process in facial palsy (FP) patients is crucial for time- and cost-effective therapy decision-making. The House-Brackmann scale (HBS) represents the most commonly used classification system in FP diagnostics. This study investigated the benefits of linking machine learning (ML) techniques with the HBS. Methods: Image datasets of 51 patients seen at the Department of Plastic, Hand, and Reconstructive Surgery at the University Hospital Regensburg, Germany, between June 2020 and May 2021, were used to build the neural network. A total of nine facial poses per patient were used to automatically determine the HBS. Results: The algorithm had an accuracy of 98%. The algorithm processed the real patient image series (i.e., nine images per patient) in 112 ms. For optimized accuracy, we found 30 training runs to be the most effective training length. Conclusion: We have developed an easy-to-use, time- and cost-efficient algorithm that provides highly accurate automated grading of FP patient images. In combination with our application, the algorithm may facilitate the FP surgeon’s clinical workflow. MDPI 2022-10-19 /pmc/articles/PMC9605133/ /pubmed/36294878 http://dx.doi.org/10.3390/jpm12101739 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Knoedler, Leonard
Miragall, Maximilian
Kauke-Navarro, Martin
Obed, Doha
Bauer, Maximilian
Tißler, Patrick
Prantl, Lukas
Machens, Hans-Guenther
Broer, Peter Niclas
Baecher, Helena
Panayi, Adriana C.
Knoedler, Samuel
Kehrer, Andreas
A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title_full A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title_fullStr A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title_full_unstemmed A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title_short A Ready-to-Use Grading Tool for Facial Palsy Examiners—Automated Grading System in Facial Palsy Patients Made Easy
title_sort ready-to-use grading tool for facial palsy examiners—automated grading system in facial palsy patients made easy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605133/
https://www.ncbi.nlm.nih.gov/pubmed/36294878
http://dx.doi.org/10.3390/jpm12101739
work_keys_str_mv AT knoedlerleonard areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT miragallmaximilian areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT kaukenavarromartin areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT obeddoha areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT bauermaximilian areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT tißlerpatrick areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT prantllukas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT machenshansguenther areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT broerpeterniclas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT baecherhelena areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT panayiadrianac areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT knoedlersamuel areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT kehrerandreas areadytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT knoedlerleonard readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT miragallmaximilian readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT kaukenavarromartin readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT obeddoha readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT bauermaximilian readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT tißlerpatrick readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT prantllukas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT machenshansguenther readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT broerpeterniclas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT baecherhelena readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT panayiadrianac readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT knoedlersamuel readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy
AT kehrerandreas readytousegradingtoolforfacialpalsyexaminersautomatedgradingsysteminfacialpalsypatientsmadeeasy