Cargando…

The Predictive Role of Subcutaneous Adipose Tissue in the Pathogenesis of Obstructive Sleep Apnoea

SIMPLE SUMMARY: Although several methods are used to diagnose obstructive sleep apnoea (OSA), the disorder is still underdiagnosed, leading to public healthcare problems. The main aim of the present study was to analyse the role of artificial intelligence in OSA diagnostics and obstruction localisat...

Descripción completa

Detalles Bibliográficos
Autores principales: Molnár, Viktória, Lakner, Zoltán, Molnár, András, Tárnoki, Dávid László, Tárnoki, Ádám Domonkos, Kunos, László, Tamás, László
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605212/
https://www.ncbi.nlm.nih.gov/pubmed/36294937
http://dx.doi.org/10.3390/life12101504
Descripción
Sumario:SIMPLE SUMMARY: Although several methods are used to diagnose obstructive sleep apnoea (OSA), the disorder is still underdiagnosed, leading to public healthcare problems. The main aim of the present study was to analyse the role of artificial intelligence in OSA diagnostics and obstruction localisation and, moreover, the role of subcutaneous adipose tissue in OSA pathophysiology. The significance of the present investigation is that using US in OSA diagnostics and obstruction location, an additional opportunity besides standard procedures (i.e., drug-induced sleep endoscopy or polygraphy) is presented, which is vital due to the high number of undiagnosed cases. Applying the algorithm, including artificial intelligence, the presence of obstructions and its localisation, can be determined with high precision. This can be essential in therapy planning or preoperative patient preparation. ABSTRACT: Introduction: Our aim was to investigate the applicability of artificial intelligence in predicting obstructive sleep apnoea (OSA) and upper airway obstruction using ultrasound (US) measurements of subcutaneous adipose tissues (SAT) in the regions of the neck, chest and abdomen. Methods: One hundred patients were divided into mild (32), moderately severe-severe (32) OSA and non-OSA (36), according to the results of the polysomnography. These patients were examined using anthropometric measurements and US of SAT and drug-induced sleep endoscopy. Results: Using SAT US and anthropometric parameters, oropharyngeal obstruction could be predicted in 64% and tongue-based obstruction in 72%. In predicting oropharyngeal obstruction, BMI, abdominal and hip circumferences, submental SAT and SAT above the second intercostal space on the left were identified as essential parameters. Furthermore, tongue-based obstruction was predicted mainly by height, SAT measured 2 cm above the umbilicus and submental SAT. The OSA prediction was successful in 97% using the parameters mentioned above. Moreover, other parameters, such as US-based SAT, with SAT measured 2 cm above the umbilicus and both-sided SAT above the second intercostal spaces as the most important ones. Discussion: Based on our results, several categories of OSA can be predicted using artificial intelligence with high precision by using SAT and anthropometric parameters.