Cargando…
Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes
Background: Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm’s c...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605362/ https://www.ncbi.nlm.nih.gov/pubmed/36294371 http://dx.doi.org/10.3390/jcm11206049 |
_version_ | 1784818047840681984 |
---|---|
author | Karimi, Alireza Razaghi, Reza Padilla, Steven Rahmati, Seyed Mohammadali Downs, J. Crawford Acott, Ted S. Kelley, Mary J. Wang, Ruikang K. Johnstone, Murray |
author_facet | Karimi, Alireza Razaghi, Reza Padilla, Steven Rahmati, Seyed Mohammadali Downs, J. Crawford Acott, Ted S. Kelley, Mary J. Wang, Ruikang K. Johnstone, Murray |
author_sort | Karimi, Alireza |
collection | PubMed |
description | Background: Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm’s canal (SC) inner wall are largely unknown. Methods: A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen. An inverse FE-optimization algorithm was used to calculate the viscoelastic properties of the ECM/beam elements such that the TM/JCT/SC model and OCT imaging data best matched over time. Results: The ECM of the glaucoma tissues showed significantly larger time-dependent shear moduli compared to the heathy tissues. Significantly larger shear moduli were also observed in the LF regions of both the healthy and glaucoma eyes compared to the HF regions. Conclusions: The outflow tissues in both glaucoma eyes and HF regions are stiffer and less able to respond to dynamic IOP. |
format | Online Article Text |
id | pubmed-9605362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96053622022-10-27 Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes Karimi, Alireza Razaghi, Reza Padilla, Steven Rahmati, Seyed Mohammadali Downs, J. Crawford Acott, Ted S. Kelley, Mary J. Wang, Ruikang K. Johnstone, Murray J Clin Med Article Background: Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm’s canal (SC) inner wall are largely unknown. Methods: A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen. An inverse FE-optimization algorithm was used to calculate the viscoelastic properties of the ECM/beam elements such that the TM/JCT/SC model and OCT imaging data best matched over time. Results: The ECM of the glaucoma tissues showed significantly larger time-dependent shear moduli compared to the heathy tissues. Significantly larger shear moduli were also observed in the LF regions of both the healthy and glaucoma eyes compared to the HF regions. Conclusions: The outflow tissues in both glaucoma eyes and HF regions are stiffer and less able to respond to dynamic IOP. MDPI 2022-10-13 /pmc/articles/PMC9605362/ /pubmed/36294371 http://dx.doi.org/10.3390/jcm11206049 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Karimi, Alireza Razaghi, Reza Padilla, Steven Rahmati, Seyed Mohammadali Downs, J. Crawford Acott, Ted S. Kelley, Mary J. Wang, Ruikang K. Johnstone, Murray Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title | Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title_full | Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title_fullStr | Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title_full_unstemmed | Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title_short | Viscoelastic Biomechanical Properties of the Conventional Aqueous Outflow Pathway Tissues in Healthy and Glaucoma Human Eyes |
title_sort | viscoelastic biomechanical properties of the conventional aqueous outflow pathway tissues in healthy and glaucoma human eyes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605362/ https://www.ncbi.nlm.nih.gov/pubmed/36294371 http://dx.doi.org/10.3390/jcm11206049 |
work_keys_str_mv | AT karimialireza viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT razaghireza viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT padillasteven viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT rahmatiseyedmohammadali viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT downsjcrawford viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT acottteds viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT kelleymaryj viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT wangruikangk viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes AT johnstonemurray viscoelasticbiomechanicalpropertiesoftheconventionalaqueousoutflowpathwaytissuesinhealthyandglaucomahumaneyes |