Cargando…
Machine Learning in Predicting Tooth Loss: A Systematic Review and Risk of Bias Assessment
Predicting tooth loss is a persistent clinical challenge in the 21st century. While an emerging field in dentistry, computational solutions that employ machine learning are promising for enhancing clinical outcomes, including the chairside prognostication of tooth loss. We aimed to evaluate the risk...
Autores principales: | Hasuike, Akira, Watanabe, Taito, Wakuda, Shin, Kogure, Keisuke, Yanagiya, Ryo, Byrd, Kevin M., Sato, Shuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605501/ https://www.ncbi.nlm.nih.gov/pubmed/36294820 http://dx.doi.org/10.3390/jpm12101682 |
Ejemplares similares
-
Epstein-Barr Virus Promotes the Production of Inflammatory Cytokines in Gingival Fibroblasts and RANKL-Induced Osteoclast Differentiation in RAW264.7 Cells
por: Yokoe, Sho, et al.
Publicado: (2022) -
Predictors of tooth loss: A machine learning approach
por: Elani, Hawazin W., et al.
Publicado: (2021) -
Systematic review and assessment of systematic reviews examining the effect
of periodontal treatment on glycemic control in patients with diabetes
por: Hasuike, Akira, et al.
Publicado: (2017) -
Last dental visit and severity of tooth loss: a machine learning approach
por: Bomfim, Rafael Aiello
Publicado: (2023) -
A machine learning model with human cognitive biases capable of learning from small and biased datasets
por: Taniguchi, Hidetaka, et al.
Publicado: (2018)