Cargando…

The Molecular Network behind Volatile Aroma Formation in Pear (Pyrus spp. Panguxiang) Revealed by Transcriptome Profiling via Fatty Acid Metabolic Pathways

SIMPLE SUMMARY: Pear is a widely eaten fruit all over the world. Volatile aroma is an important factor affecting fruit quality and the fatty acid metabolism pathway is important in synthesizing volatile aromas. In this study, Panguxiang (Pyrus spp. Panguxiang) is a new variety bred from P. bretschne...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Huiyun, Quan, Jine, Rana, Sohel, Wang, Yanmei, Li, Zhi, Cai, Qifei, Ma, Shuhong, Geng, Xiaodong, Liu, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605550/
https://www.ncbi.nlm.nih.gov/pubmed/36294930
http://dx.doi.org/10.3390/life12101494
Descripción
Sumario:SIMPLE SUMMARY: Pear is a widely eaten fruit all over the world. Volatile aroma is an important factor affecting fruit quality and the fatty acid metabolism pathway is important in synthesizing volatile aromas. In this study, Panguxiang (Pyrus spp. Panguxiang) is a new variety bred from P. bretschneideri Rehd. cv. ‘Biyang piaoli’ and, unlike most white pear varieties cultivated in China, its aroma is also vital. The study aimed to explore unique pear resources of rich fruit aroma and to clarify the metabolism and regulation mechanism of the aromatic components in pear fruit. This paper used physiological and transcriptome methods to explore the molecular network behind volatile aroma formation in Panguxiang revealed via fatty acid metabolic pathways. Through transcriptome sequencing, weighted gene co-expression network analysis (WGCNA) identified yellow functional modules and several biological and metabolic pathways related to fatty acid formation. Finally, we identified seven and eight hub genes in the fatty acid synthesis and fatty acid metabolism pathways, respectively. Further analysis of the co-expression network allowed us to identify several key transcription factors related to the volatile aroma, including AP2/ERF-ERF, C3H, MYB, NAC, C2H2, GRAS, and Trihelix, which may also be involved in fatty acid synthesis and further influence the formation of aroma. ABSTRACT: Pears are popular table fruits, grown and consumed worldwide for their excellent color, aroma, and taste. Volatile aroma is an important factor affecting fruit quality, and the fatty acid metabolism pathway is important in synthesizing volatile aromas. Most of the white pear varieties cultivated in China are not strongly scented, which significantly affects their overall quality. Panguxiang is a white pear cultivar, but its aroma has unique components and is strong. The study of the mechanisms by which aroma is formed in Panguxiang is, therefore, essential to improving the quality of the fruit. The study analyzed physiological and transcriptome factors to reveal the molecular network behind volatile aroma formation in Panguxiang. The samples of Panguxiang fruit were collected in two (fruit development at 60, 90, 120, and 147 days, and fruit storage at 0, 7, 14, 21, and 28 days) periods. A total of nine sample stages were used for RNA extraction and paired-end sequencing. In addition, RNA quantification and qualification, library preparation and sequencing, data analysis and gene annotation, gene co-expression network analysis, and validation of DEGs through quantitative real-time PCR (qRT-;PCR) were performed in this study. The WGCNA identified yellow functional modules and several biological and metabolic pathways related to fatty acid formation. Finally, we identified seven and eight hub genes in the fatty acid synthesis and fatty acid metabolism pathways, respectively. Further analysis of the co-expression network allowed us to identify several key transcription factors related to the volatile aroma, including AP2/ERF-ERF, C3H, MYB, NAC, C2H2, GRAS, and Trihelix, which may also be involved in the fatty acid synthesis. This study lays a theoretical foundation for studying volatile compounds in pear fruits and provides a theoretical basis for related research in other fruits.