Cargando…

Analysis of MicroRNA Regulation and Gene Expression Variability in Single Cell Data

MicroRNAs (miRNAs) regulate gene expression by binding to mRNAs, and thus reduce target gene expression levels and expression variability, also known as ‘noise’. Single-cell RNA sequencing (scRNA-seq) technology has been used to study miRNA and mRNA expression in single cells. To evaluate scRNA-seq...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wendao, Shomron, Noam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605646/
https://www.ncbi.nlm.nih.gov/pubmed/36294889
http://dx.doi.org/10.3390/jpm12101750
Descripción
Sumario:MicroRNAs (miRNAs) regulate gene expression by binding to mRNAs, and thus reduce target gene expression levels and expression variability, also known as ‘noise’. Single-cell RNA sequencing (scRNA-seq) technology has been used to study miRNA and mRNA expression in single cells. To evaluate scRNA-seq as a tool for investigating miRNA regulation, we analyzed datasets with both mRNA and miRNA expression in single-cell format. We found that miRNAs slightly reduce the expression noise of target genes; however, this effect is easily masked by strong technical noise from scRNA-seq. We suggest improvements aimed at reducing technical noise, which can be implemented in experimental design and computational analysis prior to running scRNA-seq. Our study provides useful guidelines for experiments that evaluate the effect of miRNAs on mRNA expression from scRNA-seq.