Cargando…
Disruption evaluation in end-to-end semiconductor supply chains via interpretable machine learning
COVID-19 has posed unprecedented challenges to global health and the world economy. Two years into the pandemic, the widespread impact of COVID-19 continues to deepen, impacting different industries such as the automotive industry and its supply chain. This study presents a hybrid approach combining...
Autores principales: | Jaenichen, Friedrich-Maximilian, Liepold, Christina J., Ismail, Abdelgafar, Schiffer, Maximilian, Ehm, Hans |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605715/ http://dx.doi.org/10.1016/j.ifacol.2022.09.479 |
Ejemplares similares
-
Simulating the COVID19-pandemic and its impact on the semiconductor supply chain: Enabling a supply chain risk management framework
por: Mahachi, Mukai, et al.
Publicado: (2022) -
Improving End-to-End Traceability and Pharma Supply Chain Resilience using Blockchain
por: Sim, Corrine, et al.
Publicado: (2022) -
The End of Lean?: Automobile Manufacturers Are Rethinking Some Supply Chain Basics
por: Munson, Chuck
Publicado: (2013) -
A robust and interpretable end-to-end deep learning model for cytometry data
por: Hu, Zicheng, et al.
Publicado: (2020) -
Reducing the Risk of Supply Chain Disruptions
por: Kim, Sang
Publicado: (2014)