Cargando…
Experimental confirmation of self-imaging effect between guided light and surface plasmon polaritons in hybrid plasmonic waveguides
We fabricated a hybrid plasmonic device using self-imaging effect between guided light and surface plasmon polaritons in the hybrid plasmonic waveguide. The hybrid plasmonic device was fabricated by evaporating gold on the part of the silicon waveguide. Self-imaging was generated at the gold-covered...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9605978/ https://www.ncbi.nlm.nih.gov/pubmed/36289353 http://dx.doi.org/10.1038/s41598-022-22796-8 |
Sumario: | We fabricated a hybrid plasmonic device using self-imaging effect between guided light and surface plasmon polaritons in the hybrid plasmonic waveguide. The hybrid plasmonic device was fabricated by evaporating gold on the part of the silicon waveguide. Self-imaging was generated at the gold-covered section in the waveguide. Self-imaging of guided light and surface plasmon polaritons in hybrid plasmonic waveguides affect the output intensity of the hybrid plasmonic waveguide. The length of the hybrid plasmonic waveguide changes self-imaging conditions. We confirmed that the output intensity was affected by the length of the hybrid plasmonic waveguide. These findings contribute to the development of hybrid plasmonic devices and potentially improve integration density of hybrid photonic integrated circuits. |
---|