Cargando…

CycleFlow simultaneously quantifies cell-cycle phase lengths and quiescence in vivo

Populations of stem, progenitor, or cancer cells show proliferative heterogeneity in vivo, comprising proliferating and quiescent cells. Consistent quantification of the quiescent subpopulation and progression of the proliferating cells through the individual phases of the cell cycle has not been ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Jolly, Adrien, Fanti, Ann-Kathrin, Kongsaysak-Lengyel, Csilla, Claudino, Nina, Gräßer, Ines, Becker, Nils B., Höfer, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606136/
https://www.ncbi.nlm.nih.gov/pubmed/36313807
http://dx.doi.org/10.1016/j.crmeth.2022.100315
Descripción
Sumario:Populations of stem, progenitor, or cancer cells show proliferative heterogeneity in vivo, comprising proliferating and quiescent cells. Consistent quantification of the quiescent subpopulation and progression of the proliferating cells through the individual phases of the cell cycle has not been achieved. Here, we describe CycleFlow, a method that robustly infers this comprehensive information from standard pulse-chase experiments with thymidine analogs. Inference is based on a mathematical model of the cell cycle, with realistic waiting time distributions for the G(1), S, and G(2)/M phases and a long-term quiescent G(0) state. We validate CycleFlow with an exponentially growing cancer cell line in vitro. Applying it to T cell progenitors in steady state in vivo, we uncover strong proliferative heterogeneity, with a minority of CD4(+)CD8(+) T cell progenitors cycling very rapidly and then entering quiescence. CycleFlow is suitable as a routine method for quantitative cell-cycle analysis.