Cargando…
Variational multiscale reinforcement learning for discovering reduced order closure models of nonlinear spatiotemporal transport systems
A central challenge in the computational modeling and simulation of a multitude of science applications is to achieve robust and accurate closures for their coarse-grained representations due to underlying highly nonlinear multiscale interactions. These closure models are common in many nonlinear sp...
Autores principales: | San, Omer, Pawar, Suraj, Rasheed, Adil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606317/ https://www.ncbi.nlm.nih.gov/pubmed/36289290 http://dx.doi.org/10.1038/s41598-022-22598-y |
Ejemplares similares
-
Decentralized digital twins of complex dynamical systems
por: San, Omer, et al.
Publicado: (2023) -
Multi-fidelity information fusion with concatenated neural networks
por: Pawar, Suraj, et al.
Publicado: (2022) -
Multifidelity computing for coupling full and reduced order models
por: Ahmed, Shady E., et al.
Publicado: (2021) -
Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles
por: Havenstrøm, Simen Theie, et al.
Publicado: (2021) -
Multiscale, Nonlinear and Adaptive Approximation
por: DeVore, Ronald A
Publicado: (2009)