Cargando…

New anionic cobalt(III) complexes enable enantioselective synthesis of spiro-fused oxazoline and iodoacetal derivatives

Anionic salicylimine-based cobalt (III) complexes featuring chiral ligands derived from isoleucine amino acids were used as efficient bifunctional phase-transfer catalysts for electrophilic iodination of enol ethers. The Brønsted acids of these complexes enabled the enantioselective asymmetric iodoc...

Descripción completa

Detalles Bibliográficos
Autores principales: Salem, Mohamed S. H., Takizawa, Shinobu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606352/
https://www.ncbi.nlm.nih.gov/pubmed/36311431
http://dx.doi.org/10.3389/fchem.2022.1034291
Descripción
Sumario:Anionic salicylimine-based cobalt (III) complexes featuring chiral ligands derived from isoleucine amino acids were used as efficient bifunctional phase-transfer catalysts for electrophilic iodination of enol ethers. The Brønsted acids of these complexes enabled the enantioselective asymmetric iodocyclization of enol ethers, furnishing spiro-fused oxazoline derivatives in high yields with up to 90:10 er. In addition, chiral cobalt (III) complexes catalyze the asymmetric intermolecular iodoacetalization of enol ethers with various alcohols to afford 3-iodoacetal derivatives in high yields with up to 92:8 er.