Cargando…
Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not b...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606383/ https://www.ncbi.nlm.nih.gov/pubmed/36055244 http://dx.doi.org/10.1016/j.ajhg.2022.08.007 |
_version_ | 1784818286350827520 |
---|---|
author | Yin, Xianyong Bose, Debraj Kwon, Annie Hanks, Sarah C. Jackson, Anne U. Stringham, Heather M. Welch, Ryan Oravilahti, Anniina Fernandes Silva, Lilian Locke, Adam E. Fuchsberger, Christian Service, Susan K. Erdos, Michael R. Bonnycastle, Lori L. Kuusisto, Johanna Stitziel, Nathan O. Hall, Ira M. Morrison, Jean Ripatti, Samuli Palotie, Aarno Freimer, Nelson B. Collins, Francis S. Mohlke, Karen L. Scott, Laura J. Fauman, Eric B. Burant, Charles Boehnke, Michael Laakso, Markku Wen, Xiaoquan |
author_facet | Yin, Xianyong Bose, Debraj Kwon, Annie Hanks, Sarah C. Jackson, Anne U. Stringham, Heather M. Welch, Ryan Oravilahti, Anniina Fernandes Silva, Lilian Locke, Adam E. Fuchsberger, Christian Service, Susan K. Erdos, Michael R. Bonnycastle, Lori L. Kuusisto, Johanna Stitziel, Nathan O. Hall, Ira M. Morrison, Jean Ripatti, Samuli Palotie, Aarno Freimer, Nelson B. Collins, Francis S. Mohlke, Karen L. Scott, Laura J. Fauman, Eric B. Burant, Charles Boehnke, Michael Laakso, Markku Wen, Xiaoquan |
author_sort | Yin, Xianyong |
collection | PubMed |
description | Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology. |
format | Online Article Text |
id | pubmed-9606383 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96063832022-10-28 Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk Yin, Xianyong Bose, Debraj Kwon, Annie Hanks, Sarah C. Jackson, Anne U. Stringham, Heather M. Welch, Ryan Oravilahti, Anniina Fernandes Silva, Lilian Locke, Adam E. Fuchsberger, Christian Service, Susan K. Erdos, Michael R. Bonnycastle, Lori L. Kuusisto, Johanna Stitziel, Nathan O. Hall, Ira M. Morrison, Jean Ripatti, Samuli Palotie, Aarno Freimer, Nelson B. Collins, Francis S. Mohlke, Karen L. Scott, Laura J. Fauman, Eric B. Burant, Charles Boehnke, Michael Laakso, Markku Wen, Xiaoquan Am J Hum Genet Article Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology. Elsevier 2022-10-06 2022-09-01 /pmc/articles/PMC9606383/ /pubmed/36055244 http://dx.doi.org/10.1016/j.ajhg.2022.08.007 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Yin, Xianyong Bose, Debraj Kwon, Annie Hanks, Sarah C. Jackson, Anne U. Stringham, Heather M. Welch, Ryan Oravilahti, Anniina Fernandes Silva, Lilian Locke, Adam E. Fuchsberger, Christian Service, Susan K. Erdos, Michael R. Bonnycastle, Lori L. Kuusisto, Johanna Stitziel, Nathan O. Hall, Ira M. Morrison, Jean Ripatti, Samuli Palotie, Aarno Freimer, Nelson B. Collins, Francis S. Mohlke, Karen L. Scott, Laura J. Fauman, Eric B. Burant, Charles Boehnke, Michael Laakso, Markku Wen, Xiaoquan Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title | Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title_full | Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title_fullStr | Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title_full_unstemmed | Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title_short | Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk |
title_sort | integrating transcriptomics, metabolomics, and gwas helps reveal molecular mechanisms for metabolite levels and disease risk |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606383/ https://www.ncbi.nlm.nih.gov/pubmed/36055244 http://dx.doi.org/10.1016/j.ajhg.2022.08.007 |
work_keys_str_mv | AT yinxianyong integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT bosedebraj integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT kwonannie integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT hankssarahc integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT jacksonanneu integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT stringhamheatherm integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT welchryan integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT oravilahtianniina integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT fernandessilvalilian integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT lockeadame integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT fuchsbergerchristian integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT servicesusank integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT erdosmichaelr integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT bonnycastleloril integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT kuusistojohanna integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT stitzielnathano integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT halliram integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT morrisonjean integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT ripattisamuli integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT palotieaarno integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT freimernelsonb integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT collinsfranciss integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT mohlkekarenl integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT scottlauraj integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT faumanericb integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT burantcharles integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT boehnkemichael integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT laaksomarkku integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk AT wenxiaoquan integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk |