Cargando…

Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk

Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not b...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Xianyong, Bose, Debraj, Kwon, Annie, Hanks, Sarah C., Jackson, Anne U., Stringham, Heather M., Welch, Ryan, Oravilahti, Anniina, Fernandes Silva, Lilian, Locke, Adam E., Fuchsberger, Christian, Service, Susan K., Erdos, Michael R., Bonnycastle, Lori L., Kuusisto, Johanna, Stitziel, Nathan O., Hall, Ira M., Morrison, Jean, Ripatti, Samuli, Palotie, Aarno, Freimer, Nelson B., Collins, Francis S., Mohlke, Karen L., Scott, Laura J., Fauman, Eric B., Burant, Charles, Boehnke, Michael, Laakso, Markku, Wen, Xiaoquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606383/
https://www.ncbi.nlm.nih.gov/pubmed/36055244
http://dx.doi.org/10.1016/j.ajhg.2022.08.007
_version_ 1784818286350827520
author Yin, Xianyong
Bose, Debraj
Kwon, Annie
Hanks, Sarah C.
Jackson, Anne U.
Stringham, Heather M.
Welch, Ryan
Oravilahti, Anniina
Fernandes Silva, Lilian
Locke, Adam E.
Fuchsberger, Christian
Service, Susan K.
Erdos, Michael R.
Bonnycastle, Lori L.
Kuusisto, Johanna
Stitziel, Nathan O.
Hall, Ira M.
Morrison, Jean
Ripatti, Samuli
Palotie, Aarno
Freimer, Nelson B.
Collins, Francis S.
Mohlke, Karen L.
Scott, Laura J.
Fauman, Eric B.
Burant, Charles
Boehnke, Michael
Laakso, Markku
Wen, Xiaoquan
author_facet Yin, Xianyong
Bose, Debraj
Kwon, Annie
Hanks, Sarah C.
Jackson, Anne U.
Stringham, Heather M.
Welch, Ryan
Oravilahti, Anniina
Fernandes Silva, Lilian
Locke, Adam E.
Fuchsberger, Christian
Service, Susan K.
Erdos, Michael R.
Bonnycastle, Lori L.
Kuusisto, Johanna
Stitziel, Nathan O.
Hall, Ira M.
Morrison, Jean
Ripatti, Samuli
Palotie, Aarno
Freimer, Nelson B.
Collins, Francis S.
Mohlke, Karen L.
Scott, Laura J.
Fauman, Eric B.
Burant, Charles
Boehnke, Michael
Laakso, Markku
Wen, Xiaoquan
author_sort Yin, Xianyong
collection PubMed
description Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.
format Online
Article
Text
id pubmed-9606383
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96063832022-10-28 Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk Yin, Xianyong Bose, Debraj Kwon, Annie Hanks, Sarah C. Jackson, Anne U. Stringham, Heather M. Welch, Ryan Oravilahti, Anniina Fernandes Silva, Lilian Locke, Adam E. Fuchsberger, Christian Service, Susan K. Erdos, Michael R. Bonnycastle, Lori L. Kuusisto, Johanna Stitziel, Nathan O. Hall, Ira M. Morrison, Jean Ripatti, Samuli Palotie, Aarno Freimer, Nelson B. Collins, Francis S. Mohlke, Karen L. Scott, Laura J. Fauman, Eric B. Burant, Charles Boehnke, Michael Laakso, Markku Wen, Xiaoquan Am J Hum Genet Article Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and locus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolomics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in 260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Integrating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Integrating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma (E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expression on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of integrating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology. Elsevier 2022-10-06 2022-09-01 /pmc/articles/PMC9606383/ /pubmed/36055244 http://dx.doi.org/10.1016/j.ajhg.2022.08.007 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yin, Xianyong
Bose, Debraj
Kwon, Annie
Hanks, Sarah C.
Jackson, Anne U.
Stringham, Heather M.
Welch, Ryan
Oravilahti, Anniina
Fernandes Silva, Lilian
Locke, Adam E.
Fuchsberger, Christian
Service, Susan K.
Erdos, Michael R.
Bonnycastle, Lori L.
Kuusisto, Johanna
Stitziel, Nathan O.
Hall, Ira M.
Morrison, Jean
Ripatti, Samuli
Palotie, Aarno
Freimer, Nelson B.
Collins, Francis S.
Mohlke, Karen L.
Scott, Laura J.
Fauman, Eric B.
Burant, Charles
Boehnke, Michael
Laakso, Markku
Wen, Xiaoquan
Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title_full Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title_fullStr Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title_full_unstemmed Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title_short Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
title_sort integrating transcriptomics, metabolomics, and gwas helps reveal molecular mechanisms for metabolite levels and disease risk
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606383/
https://www.ncbi.nlm.nih.gov/pubmed/36055244
http://dx.doi.org/10.1016/j.ajhg.2022.08.007
work_keys_str_mv AT yinxianyong integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT bosedebraj integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT kwonannie integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT hankssarahc integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT jacksonanneu integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT stringhamheatherm integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT welchryan integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT oravilahtianniina integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT fernandessilvalilian integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT lockeadame integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT fuchsbergerchristian integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT servicesusank integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT erdosmichaelr integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT bonnycastleloril integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT kuusistojohanna integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT stitzielnathano integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT halliram integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT morrisonjean integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT ripattisamuli integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT palotieaarno integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT freimernelsonb integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT collinsfranciss integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT mohlkekarenl integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT scottlauraj integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT faumanericb integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT burantcharles integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT boehnkemichael integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT laaksomarkku integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk
AT wenxiaoquan integratingtranscriptomicsmetabolomicsandgwashelpsrevealmolecularmechanismsformetabolitelevelsanddiseaserisk