Cargando…
Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols
INTRODUCTION: This study aimed to construct a radiomics-based machine learning (ML) model for differentiation between non-clear cell and clear cell renal cell carcinomas (ccRCC) that is robust against institutional imaging protocols and scanners. MATERIALS AND METHODS: Preoperative unenhanced (UN),...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606401/ https://www.ncbi.nlm.nih.gov/pubmed/36314024 http://dx.doi.org/10.3389/fmed.2022.974485 |
_version_ | 1784818289594073088 |
---|---|
author | Budai, Bettina Katalin Stollmayer, Róbert Rónaszéki, Aladár Dávid Körmendy, Borbála Zsombor, Zita Palotás, Lõrinc Fejér, Bence Szendrõi, Attila Székely, Eszter Maurovich-Horvat, Pál Kaposi, Pál Novák |
author_facet | Budai, Bettina Katalin Stollmayer, Róbert Rónaszéki, Aladár Dávid Körmendy, Borbála Zsombor, Zita Palotás, Lõrinc Fejér, Bence Szendrõi, Attila Székely, Eszter Maurovich-Horvat, Pál Kaposi, Pál Novák |
author_sort | Budai, Bettina Katalin |
collection | PubMed |
description | INTRODUCTION: This study aimed to construct a radiomics-based machine learning (ML) model for differentiation between non-clear cell and clear cell renal cell carcinomas (ccRCC) that is robust against institutional imaging protocols and scanners. MATERIALS AND METHODS: Preoperative unenhanced (UN), corticomedullary (CM), and excretory (EX) phase CT scans from 209 patients diagnosed with RCCs were retrospectively collected. After the three-dimensional segmentation, 107 radiomics features (RFs) were extracted from the tumor volumes in each contrast phase. For the ML analysis, the cases were randomly split into training and test sets with a 3:1 ratio. Highly correlated RFs were filtered out based on Pearson’s correlation coefficient (r > 0.95). Intraclass correlation coefficient analysis was used to select RFs with excellent reproducibility (ICC ≥ 0.90). The most predictive RFs were selected by the least absolute shrinkage and selection operator (LASSO). A support vector machine algorithm-based binary classifier (SVC) was constructed to predict tumor types and its performance was evaluated based-on receiver operating characteristic curve (ROC) analysis. The “Kidney Tumor Segmentation 2019” (KiTS19) publicly available dataset was used during external validation of the model. The performance of the SVC was also compared with an expert radiologist’s. RESULTS: The training set consisted of 121 ccRCCs and 38 non-ccRCCs, while the independent internal test set contained 40 ccRCCs and 13 non-ccRCCs. For external validation, 50 ccRCCs and 23 non-ccRCCs were identified from the KiTS19 dataset with the available UN, CM, and EX phase CTs. After filtering out the highly correlated and poorly reproducible features, the LASSO algorithm selected 10 CM phase RFs that were then used for model construction. During external validation, the SVC achieved an area under the ROC curve (AUC) value, accuracy, sensitivity, and specificity of 0.83, 0.78, 0.80, and 0.74, respectively. UN and/or EX phase RFs did not further increase the model’s performance. Meanwhile, in the same comparison, the expert radiologist achieved similar performance with an AUC of 0.77, an accuracy of 0.79, a sensitivity of 0.84, and a specificity of 0.69. CONCLUSION: Radiomics analysis of CM phase CT scans combined with ML can achieve comparable performance with an expert radiologist in differentiating ccRCCs from non-ccRCCs. |
format | Online Article Text |
id | pubmed-9606401 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96064012022-10-28 Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols Budai, Bettina Katalin Stollmayer, Róbert Rónaszéki, Aladár Dávid Körmendy, Borbála Zsombor, Zita Palotás, Lõrinc Fejér, Bence Szendrõi, Attila Székely, Eszter Maurovich-Horvat, Pál Kaposi, Pál Novák Front Med (Lausanne) Medicine INTRODUCTION: This study aimed to construct a radiomics-based machine learning (ML) model for differentiation between non-clear cell and clear cell renal cell carcinomas (ccRCC) that is robust against institutional imaging protocols and scanners. MATERIALS AND METHODS: Preoperative unenhanced (UN), corticomedullary (CM), and excretory (EX) phase CT scans from 209 patients diagnosed with RCCs were retrospectively collected. After the three-dimensional segmentation, 107 radiomics features (RFs) were extracted from the tumor volumes in each contrast phase. For the ML analysis, the cases were randomly split into training and test sets with a 3:1 ratio. Highly correlated RFs were filtered out based on Pearson’s correlation coefficient (r > 0.95). Intraclass correlation coefficient analysis was used to select RFs with excellent reproducibility (ICC ≥ 0.90). The most predictive RFs were selected by the least absolute shrinkage and selection operator (LASSO). A support vector machine algorithm-based binary classifier (SVC) was constructed to predict tumor types and its performance was evaluated based-on receiver operating characteristic curve (ROC) analysis. The “Kidney Tumor Segmentation 2019” (KiTS19) publicly available dataset was used during external validation of the model. The performance of the SVC was also compared with an expert radiologist’s. RESULTS: The training set consisted of 121 ccRCCs and 38 non-ccRCCs, while the independent internal test set contained 40 ccRCCs and 13 non-ccRCCs. For external validation, 50 ccRCCs and 23 non-ccRCCs were identified from the KiTS19 dataset with the available UN, CM, and EX phase CTs. After filtering out the highly correlated and poorly reproducible features, the LASSO algorithm selected 10 CM phase RFs that were then used for model construction. During external validation, the SVC achieved an area under the ROC curve (AUC) value, accuracy, sensitivity, and specificity of 0.83, 0.78, 0.80, and 0.74, respectively. UN and/or EX phase RFs did not further increase the model’s performance. Meanwhile, in the same comparison, the expert radiologist achieved similar performance with an AUC of 0.77, an accuracy of 0.79, a sensitivity of 0.84, and a specificity of 0.69. CONCLUSION: Radiomics analysis of CM phase CT scans combined with ML can achieve comparable performance with an expert radiologist in differentiating ccRCCs from non-ccRCCs. Frontiers Media S.A. 2022-10-13 /pmc/articles/PMC9606401/ /pubmed/36314024 http://dx.doi.org/10.3389/fmed.2022.974485 Text en Copyright © 2022 Budai, Stollmayer, Rónaszéki, Körmendy, Zsombor, Palotás, Fejér, Szendrõi, Székely, Maurovich-Horvat and Kaposi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Budai, Bettina Katalin Stollmayer, Róbert Rónaszéki, Aladár Dávid Körmendy, Borbála Zsombor, Zita Palotás, Lõrinc Fejér, Bence Szendrõi, Attila Székely, Eszter Maurovich-Horvat, Pál Kaposi, Pál Novák Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title | Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title_full | Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title_fullStr | Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title_full_unstemmed | Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title_short | Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
title_sort | radiomics analysis of contrast-enhanced ct scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606401/ https://www.ncbi.nlm.nih.gov/pubmed/36314024 http://dx.doi.org/10.3389/fmed.2022.974485 |
work_keys_str_mv | AT budaibettinakatalin radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT stollmayerrobert radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT ronaszekialadardavid radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT kormendyborbala radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT zsomborzita radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT palotaslorinc radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT fejerbence radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT szendroiattila radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT szekelyeszter radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT maurovichhorvatpal radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols AT kaposipalnovak radiomicsanalysisofcontrastenhancedctscanscandistinguishbetweenclearcellandnonclearcellrenalcellcarcinomaindifferentimagingprotocols |