Cargando…
Prediction Models for Suicide Attempts among Adolescents Using Machine Learning Techniques
OBJECTIVE: Suicide attempts (SAs) in adolescents are difficult to predict although it is a leading cause of death among adolescents. This study aimed to develop and evaluate SA prediction models based on six different machine learning (ML) algorithms for Korean adolescents using data from online sur...
Autores principales: | Lim, Jae Seok, Yang, Chan-Mo, Baek, Ju-Won, Lee, Sang-Yeol, Kim, Bung-Nyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean College of Neuropsychopharmacology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606439/ https://www.ncbi.nlm.nih.gov/pubmed/36263637 http://dx.doi.org/10.9758/cpn.2022.20.4.609 |
Ejemplares similares
-
Classification of Adolescent Psychiatric Patients at High Risk of Suicide Using the Personality Assessment Inventory by Machine Learning
por: Kim, Kyung-Won, et al.
Publicado: (2021) -
The Association between Attention Deficit/Hyperactivity Disorder Symptoms and the Number of Suicide Attempts among Male Young Adults with Unipolar and Bipolar Depression
por: Yang, Chan-Mo, et al.
Publicado: (2020) -
Clinical Characteristics and Precipitating Factors of Adolescent Suicide Attempters Admitted for Psychiatric Inpatient Care in South Korea
por: Park, Subin, et al.
Publicado: (2015) -
Machine Learning Assessment of Early Life Factors Predicting Suicide Attempt in Adolescence or Young Adulthood
por: Navarro, Marie C., et al.
Publicado: (2021) -
Detection of Suicide Attempters among Suicide Ideators Using Machine Learning
por: Ryu, Seunghyong, et al.
Publicado: (2019)