Cargando…

Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients

BACKGROUND AND PURPOSE: The aim of the study is to predict the subthalamic nucleus (STN) deep brain stimulation (DBS) outcomes for Parkinson’s disease (PD) patients using the radiomic features extracted from pre-operative magnetic resonance images (MRI). METHODS: The study included 34 PD patients wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Saudargiene, Ausra, Radziunas, Andrius, Dainauskas, Justinas J., Kucinskas, Vytautas, Vaitkiene, Paulina, Pranckeviciene, Aiste, Laucius, Ovidijus, Tamasauskas, Arimantas, Deltuva, Vytenis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606748/
https://www.ncbi.nlm.nih.gov/pubmed/36312034
http://dx.doi.org/10.3389/fnins.2022.1028996
_version_ 1784818366516559872
author Saudargiene, Ausra
Radziunas, Andrius
Dainauskas, Justinas J.
Kucinskas, Vytautas
Vaitkiene, Paulina
Pranckeviciene, Aiste
Laucius, Ovidijus
Tamasauskas, Arimantas
Deltuva, Vytenis
author_facet Saudargiene, Ausra
Radziunas, Andrius
Dainauskas, Justinas J.
Kucinskas, Vytautas
Vaitkiene, Paulina
Pranckeviciene, Aiste
Laucius, Ovidijus
Tamasauskas, Arimantas
Deltuva, Vytenis
author_sort Saudargiene, Ausra
collection PubMed
description BACKGROUND AND PURPOSE: The aim of the study is to predict the subthalamic nucleus (STN) deep brain stimulation (DBS) outcomes for Parkinson’s disease (PD) patients using the radiomic features extracted from pre-operative magnetic resonance images (MRI). METHODS: The study included 34 PD patients who underwent DBS implantation in the STN. Five patients (15%) showed poor DBS motor outcome. All together 9 amygdalar nuclei and 12 hippocampus subfields were segmented using Freesurfer 7.0 pipeline from pre-operative MRI images. Furthermore, PyRadiomics platform was used to extract 120 radiomic features for each nuclei and subfield resulting in 5,040 features. Minimum Redundancy Maximum Relevance (mRMR) feature selection method was employed to reduce the number of features to 20, and 8 machine learning methods (regularized binary logistic regression (LR), decision tree classifier (DT), linear discriminant analysis (LDA), naive Bayes classifier (NB), kernel support vector machine (SVM), deep feed-forward neural network (DNN), one-class support vector machine (OC-SVM), feed-forward neural network-based autoencoder for anomaly detection (DNN-A)) were applied to build the models for poor vs. good and very good STN-DBS motor outcome prediction. RESULTS: The highest mean prediction accuracy was obtained using regularized LR (96.65 ± 7.24%, AUC 0.98 ± 0.06) and DNN (87.25 ± 14.80%, AUC 0.87 ± 0.18). CONCLUSION: The results show the potential power of the radiomic features extracted from hippocampus and amygdala MRI in the prediction of STN-DBS motor outcomes for PD patients.
format Online
Article
Text
id pubmed-9606748
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-96067482022-10-28 Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients Saudargiene, Ausra Radziunas, Andrius Dainauskas, Justinas J. Kucinskas, Vytautas Vaitkiene, Paulina Pranckeviciene, Aiste Laucius, Ovidijus Tamasauskas, Arimantas Deltuva, Vytenis Front Neurosci Neuroscience BACKGROUND AND PURPOSE: The aim of the study is to predict the subthalamic nucleus (STN) deep brain stimulation (DBS) outcomes for Parkinson’s disease (PD) patients using the radiomic features extracted from pre-operative magnetic resonance images (MRI). METHODS: The study included 34 PD patients who underwent DBS implantation in the STN. Five patients (15%) showed poor DBS motor outcome. All together 9 amygdalar nuclei and 12 hippocampus subfields were segmented using Freesurfer 7.0 pipeline from pre-operative MRI images. Furthermore, PyRadiomics platform was used to extract 120 radiomic features for each nuclei and subfield resulting in 5,040 features. Minimum Redundancy Maximum Relevance (mRMR) feature selection method was employed to reduce the number of features to 20, and 8 machine learning methods (regularized binary logistic regression (LR), decision tree classifier (DT), linear discriminant analysis (LDA), naive Bayes classifier (NB), kernel support vector machine (SVM), deep feed-forward neural network (DNN), one-class support vector machine (OC-SVM), feed-forward neural network-based autoencoder for anomaly detection (DNN-A)) were applied to build the models for poor vs. good and very good STN-DBS motor outcome prediction. RESULTS: The highest mean prediction accuracy was obtained using regularized LR (96.65 ± 7.24%, AUC 0.98 ± 0.06) and DNN (87.25 ± 14.80%, AUC 0.87 ± 0.18). CONCLUSION: The results show the potential power of the radiomic features extracted from hippocampus and amygdala MRI in the prediction of STN-DBS motor outcomes for PD patients. Frontiers Media S.A. 2022-10-13 /pmc/articles/PMC9606748/ /pubmed/36312034 http://dx.doi.org/10.3389/fnins.2022.1028996 Text en Copyright © 2022 Saudargiene, Radziunas, Dainauskas, Kucinskas, Vaitkiene, Pranckeviciene, Laucius, Tamasauskas and Deltuva. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Saudargiene, Ausra
Radziunas, Andrius
Dainauskas, Justinas J.
Kucinskas, Vytautas
Vaitkiene, Paulina
Pranckeviciene, Aiste
Laucius, Ovidijus
Tamasauskas, Arimantas
Deltuva, Vytenis
Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title_full Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title_fullStr Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title_full_unstemmed Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title_short Radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for Parkinson‘s disease patients
title_sort radiomic features of amygdala nuclei and hippocampus subfields help to predict subthalamic deep brain stimulation motor outcomes for parkinson‘s disease patients
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606748/
https://www.ncbi.nlm.nih.gov/pubmed/36312034
http://dx.doi.org/10.3389/fnins.2022.1028996
work_keys_str_mv AT saudargieneausra radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT radziunasandrius radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT dainauskasjustinasj radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT kucinskasvytautas radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT vaitkienepaulina radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT pranckevicieneaiste radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT lauciusovidijus radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT tamasauskasarimantas radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients
AT deltuvavytenis radiomicfeaturesofamygdalanucleiandhippocampussubfieldshelptopredictsubthalamicdeepbrainstimulationmotoroutcomesforparkinsonsdiseasepatients