Cargando…
Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions
The current study looked at the plant growth-promoting (PGP) traits of the pre-isolated and metal-tolerant Bacillus cereus NDRMN001 as well as their stimulatory effect on the physiology, biomolecule content, and phytoremediation potential of Cajanus cajan (L.) Millsp. on metal-polluted soil. The bau...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606752/ https://www.ncbi.nlm.nih.gov/pubmed/36311057 http://dx.doi.org/10.3389/fpls.2022.1017043 |
_version_ | 1784818367525289984 |
---|---|
author | Narayanan, Mathiyazhagan Pugazhendhi, Arivalagan Ma, Ying |
author_facet | Narayanan, Mathiyazhagan Pugazhendhi, Arivalagan Ma, Ying |
author_sort | Narayanan, Mathiyazhagan |
collection | PubMed |
description | The current study looked at the plant growth-promoting (PGP) traits of the pre-isolated and metal-tolerant Bacillus cereus NDRMN001 as well as their stimulatory effect on the physiology, biomolecule content, and phytoremediation potential of Cajanus cajan (L.) Millsp. on metal-polluted soil. The bauxite mine, which is surrounded by farmland (1 km away), has been severely polluted by metals such as Cd (31.24 ± 1.68), Zn (769.57 ± 3.46), Pb (326.85 ± 3.43), Mn (2519.6 ± 5.71), and Cr (302.34 ± 1.62 mg kg(−1)) that exceeded Indian standards. The metal-tolerant B. cereus NDRMN001 had excellent PGP activities such as synthesis of hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA), N(2) fixation, and P solubilization. Furthermore, the optimal growth conditions (temperature of 30°C, pH 6.5, 6% glucose, 9% tryptophan, and 1.5% tricalcium phosphate) for effective synthesis and expression of PGP traits in B. cereus NDRMN001 were determined. Such metal-tolerant B. cereus NDRMN001 traits can significantly reduce metals in polluted soil, and their PGP traits significantly improve plant growth in polluted soil. Hence, this strain (B. cereus NDRMN001) significantly improved the growth and phytoremediation potential of C. cajan (L.) Millsp on metal-polluted soil without [study I: 2 kg of sieved and autoclaved metal-polluted soil seeded with bacterium-free C. cajan (L.) Millsp. seeds] and with [study II: 2 kg of sieved and autoclaved metal-polluted soil seeded with B. cereus NDRMN001-coated C. cajan (L.) Millsp. seeds] B. cereus NDRMN001 amalgamation. Fertile soil was used as control. The physiological parameters, biomolecule contents, and the phytoremediation (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g(−1)) potential of C. cajan (L.) Millsp. were significantly effective in study II due to the metal-solubilizing and PGP traits of B. cereus NDRMN001. These results conclude that the test bacteria B. cereus NDRMN001 considerably improved the phytoremediation competence of C. cajan (L.) Millsp. on metal-polluted soil in a greenhouse study. |
format | Online Article Text |
id | pubmed-9606752 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96067522022-10-28 Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions Narayanan, Mathiyazhagan Pugazhendhi, Arivalagan Ma, Ying Front Plant Sci Plant Science The current study looked at the plant growth-promoting (PGP) traits of the pre-isolated and metal-tolerant Bacillus cereus NDRMN001 as well as their stimulatory effect on the physiology, biomolecule content, and phytoremediation potential of Cajanus cajan (L.) Millsp. on metal-polluted soil. The bauxite mine, which is surrounded by farmland (1 km away), has been severely polluted by metals such as Cd (31.24 ± 1.68), Zn (769.57 ± 3.46), Pb (326.85 ± 3.43), Mn (2519.6 ± 5.71), and Cr (302.34 ± 1.62 mg kg(−1)) that exceeded Indian standards. The metal-tolerant B. cereus NDRMN001 had excellent PGP activities such as synthesis of hydrogen cyanide (HCN), siderophore, indole acetic acid (IAA), N(2) fixation, and P solubilization. Furthermore, the optimal growth conditions (temperature of 30°C, pH 6.5, 6% glucose, 9% tryptophan, and 1.5% tricalcium phosphate) for effective synthesis and expression of PGP traits in B. cereus NDRMN001 were determined. Such metal-tolerant B. cereus NDRMN001 traits can significantly reduce metals in polluted soil, and their PGP traits significantly improve plant growth in polluted soil. Hence, this strain (B. cereus NDRMN001) significantly improved the growth and phytoremediation potential of C. cajan (L.) Millsp on metal-polluted soil without [study I: 2 kg of sieved and autoclaved metal-polluted soil seeded with bacterium-free C. cajan (L.) Millsp. seeds] and with [study II: 2 kg of sieved and autoclaved metal-polluted soil seeded with B. cereus NDRMN001-coated C. cajan (L.) Millsp. seeds] B. cereus NDRMN001 amalgamation. Fertile soil was used as control. The physiological parameters, biomolecule contents, and the phytoremediation (Cr: 7.74, Cd: 12.15, Zn: 16.72, Pb: 11.47, and Mn: 14.52 mg g(−1)) potential of C. cajan (L.) Millsp. were significantly effective in study II due to the metal-solubilizing and PGP traits of B. cereus NDRMN001. These results conclude that the test bacteria B. cereus NDRMN001 considerably improved the phytoremediation competence of C. cajan (L.) Millsp. on metal-polluted soil in a greenhouse study. Frontiers Media S.A. 2022-10-13 /pmc/articles/PMC9606752/ /pubmed/36311057 http://dx.doi.org/10.3389/fpls.2022.1017043 Text en Copyright © 2022 Narayanan, Pugazhendhi and Ma https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Narayanan, Mathiyazhagan Pugazhendhi, Arivalagan Ma, Ying Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title | Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title_full | Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title_fullStr | Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title_full_unstemmed | Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title_short | Assessment of PGP traits of Bacillus cereus NDRMN001 and its influence on Cajanus cajan (L.) Millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
title_sort | assessment of pgp traits of bacillus cereus ndrmn001 and its influence on cajanus cajan (l.) millsp. phytoremediation potential on metal-polluted soil under controlled conditions |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606752/ https://www.ncbi.nlm.nih.gov/pubmed/36311057 http://dx.doi.org/10.3389/fpls.2022.1017043 |
work_keys_str_mv | AT narayananmathiyazhagan assessmentofpgptraitsofbacilluscereusndrmn001anditsinfluenceoncajanuscajanlmillspphytoremediationpotentialonmetalpollutedsoilundercontrolledconditions AT pugazhendhiarivalagan assessmentofpgptraitsofbacilluscereusndrmn001anditsinfluenceoncajanuscajanlmillspphytoremediationpotentialonmetalpollutedsoilundercontrolledconditions AT maying assessmentofpgptraitsofbacilluscereusndrmn001anditsinfluenceoncajanuscajanlmillspphytoremediationpotentialonmetalpollutedsoilundercontrolledconditions |