Cargando…
A New Mathematical Model of Functionally Graded Porous Euler–Bernoulli Nanoscaled Beams Taking into Account Some Types of Nonlinearities
A new mathematical model of flexible physically (FN), geometrically (GN), and simultaneously physically and geometrically (PGN) nonlinear porous functionally graded (PFG) Euler–Bernoulli beams was developed using a modified couple stress theory. The ceramic phase of the functionally material was con...
Autores principales: | Krysko, A. V., Papkova, I. V., Rezchikov, A. F., Krysko, V. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606887/ https://www.ncbi.nlm.nih.gov/pubmed/36295254 http://dx.doi.org/10.3390/ma15207186 |
Ejemplares similares
-
Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise
por: Awrejcewicz, Jan, et al.
Publicado: (2018) -
Zeros of Bernoulli, generalized Bernoulli, and Euler polynomials
por: Dilcher, Karl
Publicado: (1988) -
Analysis of Nonlinear Thermoelastic Dissipation in Euler-Bernoulli Beam Resonators
por: Nourmohammadi, Zahra, et al.
Publicado: (2016) -
Stability Improvement of Flexible Shallow Shells Using Neutron Radiation
por: Krysko, Anton V., et al.
Publicado: (2020) -
Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
por: Khan, Waseem A., et al.
Publicado: (2016)