Cargando…
Construction of VGG16 Convolution Neural Network (VGG16_CNN) Classifier with NestNet-Based Segmentation Paradigm for Brain Metastasis Classification
Brain metastases (BMs) happen often in patients with metastatic cancer (MC), requiring initial and precise diagnosis of BMs, which remains important for medical care preparation and radiotherapy prognostication. Nevertheless, the susceptibility of automated BM (ABMS) diagnosis is unfairly great for...
Autor principal: | Alshammari, Abdulaziz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606896/ https://www.ncbi.nlm.nih.gov/pubmed/36298426 http://dx.doi.org/10.3390/s22208076 |
Ejemplares similares
-
P_VggNet: A convolutional neural network (CNN) with pixel-based attention map
por: Liu, Kunhua, et al.
Publicado: (2018) -
VGG-UNet/VGG-SegNet Supported Automatic Segmentation of Endoplasmic Reticulum Network in Fluorescence Microscopy Images
por: Daniel, Jesline, et al.
Publicado: (2022) -
VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction
por: Bakasa, Wilson, et al.
Publicado: (2023) -
Disease Classification in Eggplant Using Pre-trained VGG16 and MSVM
por: Krishnaswamy Rangarajan, Aravind, et al.
Publicado: (2020) -
A novel method for peanut variety identification and classification by Improved VGG16
por: Yang, Haoyan, et al.
Publicado: (2021)