Cargando…
Hot-Melt and Pressure-Sensitive Adhesives Based on Styrene-Isoprene-Styrene Triblock Copolymer, Asphaltene/Resin Blend and Naphthenic Oil
Asphaltene/resin blend (ARB) extracted from heavy crude oil was used to modify poly(styrene-block-isoprene-block-styrene) (SIS) to make it an adhesive. There were prepared double and triple mixtures containing 10–60% SIS, 10–40% ARB, and 10–50% naphthenic oil used as an additional plasticizer. The v...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606934/ https://www.ncbi.nlm.nih.gov/pubmed/36297874 http://dx.doi.org/10.3390/polym14204296 |
Sumario: | Asphaltene/resin blend (ARB) extracted from heavy crude oil was used to modify poly(styrene-block-isoprene-block-styrene) (SIS) to make it an adhesive. There were prepared double and triple mixtures containing 10–60% SIS, 10–40% ARB, and 10–50% naphthenic oil used as an additional plasticizer. The viscoelasticity of the mixtures at 25 °C and 120 °C was studied, their flow curves were obtained, and the temperature dependences of the loss tangent and the components of the complex modulus were measured. In addition, the mixtures were used as hot-melt adhesives (HMAs) and pressure-sensitive adhesives (PSAs) in the shear, peel, and pull-off tests of the adhesive bonds that they formed with steel. Both naphthenic oil and ARB act as plasticizers for SIS and make it sticky. However, only the combined use of ARB and the oil allows for achieving the best set of adhesive properties of the SIS-based mixture. High-quality HMA requires low oil content (optimal SIS/ARB/oil ratio is 50/40/10, pull-off adhesion strength (τ(t)) of 1990 kPa), whereas a lot of the oil is needed to give SIS characteristics of a PSA (SIS/ARB/oil is 20/40/40, τ(t) of 100 kPa). At the same time, the resulting PSA can be used as a hot-melt pressure-sensitive adhesive (HMPSA) that has many times lower viscosity than HMA (13.9 Pa·s versus 2640 Pa·s at 120 °C and 1 s(−1)) but provides a less strong adhesive bond (τ(t) of 960 kPa). |
---|