Cargando…
An Active Electromagnetically Induced Transparency (EIT) Metamaterial Based on Conductive Coupling
In this paper, we demonstrate an active metamaterial manifesting electromagnetically induced transparency (EIT) effect in the microwave regime. The metamaterial unit cell consists of a double-cross structure, between which a varactor diode is integrated. The capacitance of the diode is controlled by...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606948/ https://www.ncbi.nlm.nih.gov/pubmed/36295435 http://dx.doi.org/10.3390/ma15207371 |
Sumario: | In this paper, we demonstrate an active metamaterial manifesting electromagnetically induced transparency (EIT) effect in the microwave regime. The metamaterial unit cell consists of a double-cross structure, between which a varactor diode is integrated. The capacitance of the diode is controlled by a reversed electrical bias voltage supplied through two connected strip lines. The diode behaves as a radiative resonant mode and the strip lines as a non-radiative resonant mode. The two modes destructively interference with each other through conductive coupling, which leads to a transmission peak in EIT effect. Through electrical control of the diode capacitance, the transmission peak frequency is shifted from 7.4 GHz to 8.7 GHz, and the peak-to-dip ratio is tuned from 1.02 to 1.66, demonstrating a significant tunability. |
---|