Cargando…

TDP-43 Toxicity in Yeast Is Associated with a Reduction in Autophagy, and Deletions of TIP41 and PBP1 Counteract These Effects

When human TDP-43 is overexpressed in yeast it is toxic and forms cytoplasmic aggregates. The mechanism of this toxicity is unknown. Genetic screens for TDP-43 toxicity modifiers in the yeast system previously identified proteins, including PBP1, that enhance TDP-43 toxicity. The determination in ye...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Sei-Kyoung, Park, Sangeun, Liebman, Susan W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607128/
https://www.ncbi.nlm.nih.gov/pubmed/36298819
http://dx.doi.org/10.3390/v14102264
Descripción
Sumario:When human TDP-43 is overexpressed in yeast it is toxic and forms cytoplasmic aggregates. The mechanism of this toxicity is unknown. Genetic screens for TDP-43 toxicity modifiers in the yeast system previously identified proteins, including PBP1, that enhance TDP-43 toxicity. The determination in yeast that deletion of PBP1 reduces TDP-43 toxicity while overexpression enhances toxicity, led to the discovery that its human homolog, ATXN2, is associated with ALS risk. Thus, the yeast system has relevance to human disease. We now show that deletion of a new yeast gene, tip41Δ, likewise suppresses TDP-43 toxicity. We also found that TDP-43 overexpression and toxicity is associated with reduced autophagy. This is consistent with findings in other systems that increasing autophagy reduces TDP-43 toxicity and is in contrast to a report of enhanced autophagy when TDP-43 was overexpressed in yeast. Interestingly, we found that deletions of PBP1 and TIP41, which reduced TDP-43 toxicity, eliminated TDP-43′s inhibition of autophagy. This suggests that toxicity of TDP-43 expressed in yeast is in part due to its inhibition of autophagy and that deletions of PBP1 and TIP41 may reduce TDP-43 toxicity by preventing TDP-43 from inhibiting autophagy.