Cargando…

Application and Visualization of Fluorescent-Tagged Antiscalants in Electrodialysis Processing of Aqueous Solutions Prone to Gypsum Scale Deposition

Membrane scaling is a serious problem in electrodialysis. A widely used technique for controlling scale deposition in water treatment technologies is the application of antiscalants (AS). The present study reports on gypsum scale inhibition in electrodialysis cell by the two novel ASs: fluorescent-t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gil, Violetta, Oshchepkov, Maxim, Ryabova, Anastasia, Trukhina, Maria, Porozhnyy, Mikhail, Tkachenko, Sergey, Pismenskaya, Natalia, Popov, Konstantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607176/
https://www.ncbi.nlm.nih.gov/pubmed/36295761
http://dx.doi.org/10.3390/membranes12101002
Descripción
Sumario:Membrane scaling is a serious problem in electrodialysis. A widely used technique for controlling scale deposition in water treatment technologies is the application of antiscalants (AS). The present study reports on gypsum scale inhibition in electrodialysis cell by the two novel ASs: fluorescent-tagged bisphosphonate 1-hydroxy-7-(6-methoxy-1,3-dioxo-1Hbenzo[de]isoquinolin-2(3H)-yl)heptane-1,1-diyl-bis(phosphonic acid), HEDP-F and fluorescein-tagged polyacrylate, PAA-F2 (molecular mass 4000 Da) monitored by chronopotentiometry and fluorescent microscopy. It was found that cation-exchange membrane MK-40 scaling is sufficiently reduced by both ASs, used in 10(−6) mol·dm(−3) concentrations. PAA-F2 at these concentrations was found to be more efficient than HEDP-F. At the same time, PAA-F2 reveals gypsum crystals’ habit modification, while HEDP-F does not noticeably affect the crystal form of the deposit. The strong auto-luminescence of MK-40 hampers visualization of both PAA-F2 and HEDP-F on the membrane surface. Nevertheless, PAA-F2 is proved to localize partly on the surface of gypsum crystals as a molecular adsorption layer, and to change their crystal habit. Crystal surface coverage by PAA-F2 appears to be nonuniform. Alternatively, HEDP-F localizes on the surface of a deposit tentatively in the form of [Ca-HEDP-F]. The proposed mechanisms of action are formulated and discussed. The application of antiscalants in electrodialysis for membrane scaling mitigation is demonstrated to be very promising.