Cargando…
A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings
The failure of bearings can have a significant negative impact on the safe operation of equipment. Recently, deep learning has become one of the focuses of RUL prediction due to its potent scalability and nonlinear fitting ability. The supervised learning process in deep learning requires a signific...
Autores principales: | Yan, Xuguo, Xia, Xuhui, Wang, Lei, Zhang, Zelin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607207/ https://www.ncbi.nlm.nih.gov/pubmed/36298116 http://dx.doi.org/10.3390/s22207766 |
Ejemplares similares
-
Bearing Remaining Useful Life Prediction Based on Naive Bayes and Weibull Distributions
por: Zhang, Nannan, et al.
Publicado: (2018) -
Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE–MACNN
por: Wang, Yaping, et al.
Publicado: (2022) -
Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
por: Yang, Jinsong, et al.
Publicado: (2022) -
Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
por: Zhang, Rui, et al.
Publicado: (2022) -
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization
por: Liang, Deng, et al.
Publicado: (2022)