Cargando…
A Two-Stage Deep Generative Model for Masked Face Synthesis
Research on face recognition with masked faces has been increasingly important due to the prolonged COVID-19 pandemic. To make face recognition practical and robust, a large amount of face image data should be acquired for training purposes. However, it is difficult to obtain masked face images for...
Autor principal: | Lee, Seungho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607215/ https://www.ncbi.nlm.nih.gov/pubmed/36298252 http://dx.doi.org/10.3390/s22207903 |
Ejemplares similares
-
GANMasker: A Two-Stage Generative Adversarial Network for High-Quality Face Mask Removal
por: Mahmoud, Mohamed, et al.
Publicado: (2023) -
A novel DeepMaskNet model for face mask detection and masked facial recognition
por: Ullah, Naeem, et al.
Publicado: (2022) -
Hybrid Deep Feature Generation for Appropriate Face Mask Use Detection
por: Aydemir, Emrah, et al.
Publicado: (2022) -
Masked-face recognition using deep metric learning and FaceMaskNet-21
por: Golwalkar, Rucha, et al.
Publicado: (2022) -
Face Mask Assistant: Detection of Face Mask Service Stage Based on Mobile Phone
Publicado: (2021)