Cargando…
Resina Draconis Particles Encapsulated in a Hyaluronic-Acid-Based Hydrogel to Treat Complex Burn Wounds
Severe burns require urgent new dressing treatments due to their irregular wounds and secondary injuries associated with dressing changes. In this study, a hyaluronic-acid-based hydrogel was developed to treat complex burn wounds. This hydrogel was prepared by mixing and cross-linking oxidized hyalu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607235/ https://www.ncbi.nlm.nih.gov/pubmed/36297522 http://dx.doi.org/10.3390/pharmaceutics14102087 |
Sumario: | Severe burns require urgent new dressing treatments due to their irregular wounds and secondary injuries associated with dressing changes. In this study, a hyaluronic-acid-based hydrogel was developed to treat complex burn wounds. This hydrogel was prepared by mixing and cross-linking oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS) through Schiff base reactions. Micronized Resina Draconis particles were encapsulated in this hydrogel to achieve sustained release of the active components when applied on wounds. The Resina-Draconis-loaded hydrogel (RD-Gel) demonstrated good mechanical properties and excellent self-healing. The results of in vitro experiments confirmed that RD-Gel had good biocompatibility, and was able to enhance cell migration and inhibit the production of inflammatory cytokines. It also induced rapid hemostasis in rats, downregulated the levels of inflammatory cytokines, and promoted collagen regeneration on model animals, eventually accelerating the rebuilding of skin structures and wound recovery. |
---|