Cargando…

Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions

Aiming at the dynamic penetration process of a shaped-charge jet, we proposed a mathematical model for the penetration of a jet under dynamical conditions based on the theory of virtual origin and the Bernoulli equation taking into account the jet and target intensities. The dynamic penetration proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yizhen, Yin, Jianping, Zhang, Xuepeng, Yi, Jianya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607378/
https://www.ncbi.nlm.nih.gov/pubmed/36295393
http://dx.doi.org/10.3390/ma15207329
_version_ 1784818528532037632
author Wang, Yizhen
Yin, Jianping
Zhang, Xuepeng
Yi, Jianya
author_facet Wang, Yizhen
Yin, Jianping
Zhang, Xuepeng
Yi, Jianya
author_sort Wang, Yizhen
collection PubMed
description Aiming at the dynamic penetration process of a shaped-charge jet, we proposed a mathematical model for the penetration of a jet under dynamical conditions based on the theory of virtual origin and the Bernoulli equation taking into account the jet and target intensities. The dynamic penetration process of the jet was divided according to the penetration channel of the jet into the static target. The dynamic penetration model of the jet based on the unperturbed section and perturbed section was established. The penetration depth variation in the shaped-charge jet vertically penetrating target plates with different moving speeds (150~400 m/s) was analyzed by finite element software. The dynamic penetration model shows that with the increase in the target moving speed, the disturbed time of the jet continuously advances, and the dynamic penetration depth continuously decreases; as the velocity of the target increases, the penetration length of the unperturbed jet decreases and then becomes stable, while the penetration length of the perturbed jet decreases. The results showed that the mathematical model is consistent with the finite element simulation, and that the mathematical model can effectively characterize the penetration depth of the unperturbed and disturbed jet portions, adequately explain the dynamic response behavior of the jet penetrating a moving target, and effectively predict the dynamic penetration depth of the jet under the influence of the target movement.
format Online
Article
Text
id pubmed-9607378
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96073782022-10-28 Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions Wang, Yizhen Yin, Jianping Zhang, Xuepeng Yi, Jianya Materials (Basel) Article Aiming at the dynamic penetration process of a shaped-charge jet, we proposed a mathematical model for the penetration of a jet under dynamical conditions based on the theory of virtual origin and the Bernoulli equation taking into account the jet and target intensities. The dynamic penetration process of the jet was divided according to the penetration channel of the jet into the static target. The dynamic penetration model of the jet based on the unperturbed section and perturbed section was established. The penetration depth variation in the shaped-charge jet vertically penetrating target plates with different moving speeds (150~400 m/s) was analyzed by finite element software. The dynamic penetration model shows that with the increase in the target moving speed, the disturbed time of the jet continuously advances, and the dynamic penetration depth continuously decreases; as the velocity of the target increases, the penetration length of the unperturbed jet decreases and then becomes stable, while the penetration length of the perturbed jet decreases. The results showed that the mathematical model is consistent with the finite element simulation, and that the mathematical model can effectively characterize the penetration depth of the unperturbed and disturbed jet portions, adequately explain the dynamic response behavior of the jet penetrating a moving target, and effectively predict the dynamic penetration depth of the jet under the influence of the target movement. MDPI 2022-10-20 /pmc/articles/PMC9607378/ /pubmed/36295393 http://dx.doi.org/10.3390/ma15207329 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Yizhen
Yin, Jianping
Zhang, Xuepeng
Yi, Jianya
Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title_full Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title_fullStr Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title_full_unstemmed Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title_short Study on Penetration Mechanism of Shaped-Charge Jet under Dynamic Conditions
title_sort study on penetration mechanism of shaped-charge jet under dynamic conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607378/
https://www.ncbi.nlm.nih.gov/pubmed/36295393
http://dx.doi.org/10.3390/ma15207329
work_keys_str_mv AT wangyizhen studyonpenetrationmechanismofshapedchargejetunderdynamicconditions
AT yinjianping studyonpenetrationmechanismofshapedchargejetunderdynamicconditions
AT zhangxuepeng studyonpenetrationmechanismofshapedchargejetunderdynamicconditions
AT yijianya studyonpenetrationmechanismofshapedchargejetunderdynamicconditions