Cargando…
A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images
Surface deformation is a multi-factor, laser powder-bed fusion (LPBF) defect that cannot be avoided entirely using current monitoring systems. Distortion and warping, if left unchecked, can compromise the mechanical and physical properties resulting in a build with an undesired geometry. Increasing...
Autores principales: | Ansari, Muhammad Ayub, Crampton, Andrew, Parkinson, Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607518/ https://www.ncbi.nlm.nih.gov/pubmed/36295232 http://dx.doi.org/10.3390/ma15207166 |
Ejemplares similares
-
Towards Enhanced Eddy Current Testing Array Probes Scalability for Powder Bed Fusion Layer-Wise Imaging
por: Barrancos, André, et al.
Publicado: (2023) -
Correlation between surface texture and internal defects in laser powder-bed fusion additive manufacturing
por: Yonehara, Makiko, et al.
Publicado: (2021) -
Using Laser Ultrasound to Detect Subsurface Defects in Metal Laser Powder Bed Fusion Components
por: Everton, Sarah, et al.
Publicado: (2017) -
Laser Powder Bed Fusion of Metal Coated Copper Powders
por: Lindström, Viktor, et al.
Publicado: (2020) -
Mechanical Properties and In Situ Deformation Imaging of Microlattices Manufactured by Laser Based Powder Bed Fusion
por: Du Plessis, Anton, et al.
Publicado: (2018)