Cargando…
ML-DTD: Machine Learning-Based Drug Target Discovery for the Potential Treatment of COVID-19
Recent research has highlighted that a large section of druggable protein targets in the Human interactome remains unexplored for various diseases. It might lead to the drug repurposing study and help in the in-silico prediction of new drug-human protein target interactions. The same applies to the...
Autores principales: | Saha, Sovan, Chatterjee, Piyali, Halder, Anup Kumar, Nasipuri, Mita, Basu, Subhadip, Plewczynski, Dariusz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607653/ https://www.ncbi.nlm.nih.gov/pubmed/36298508 http://dx.doi.org/10.3390/vaccines10101643 |
Ejemplares similares
-
PFP-GO: Integrating protein sequence, domain and protein-protein interaction information for protein function prediction using ranked GO terms
por: Sengupta, Kaustav, et al.
Publicado: (2022) -
FunPred 3.0: improved protein function prediction using protein interaction network
por: Saha, Sovan, et al.
Publicado: (2019) -
Rule-Based Pruning and In Silico Identification of Essential Proteins in Yeast PPIN
por: Banik, Anik, et al.
Publicado: (2022) -
PPI_SVM: Prediction of protein-protein interactions using machine learning, domain-domain affinities and frequency tables
por: Chatterjee, Piyali, et al.
Publicado: (2011) -
Drug repurposing for COVID-19 using computational screening: Is Fostamatinib/R406 a potential candidate?
por: Saha, Sovan, et al.
Publicado: (2022)