Cargando…
Neural Component Analysis for Key Performance Indicator Monitoring
[Image: see text] The partial least squares (PLS) algorithm is a commonly used key performance indicator (KPI)-related performance monitoring method. To address nonlinear features in the process, this paper proposes neural component analysis (NCA)-PLS, which combines PLS with NCA. (NCA)-PLS realizes...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9607680/ https://www.ncbi.nlm.nih.gov/pubmed/36312330 http://dx.doi.org/10.1021/acsomega.2c03515 |
Sumario: | [Image: see text] The partial least squares (PLS) algorithm is a commonly used key performance indicator (KPI)-related performance monitoring method. To address nonlinear features in the process, this paper proposes neural component analysis (NCA)-PLS, which combines PLS with NCA. (NCA)-PLS realizes all the principles of PLS by introducing a new loss function and a new principal component selection mechanism to NCA. Then, the gradient descent formulas for network training are rederived. NCA-PLS can extract components with large correlations with KPI variables and adopt them for data reconstruction. Simulation tests using a mathematical model and the Tennessee Eastman process show that NCA-PLS can successfully handle nonlinear relationships in process data and that it performs much better than PLS, KPLS, and NCA. |
---|