Cargando…
Transcriptome and Metabolome Studies on Pre-Harvest Nitrogen Impact on Fruit Yield and Quality of Peach (Prunus persica L.)
Pre-harvest nitrogen (N) application has been proven effective for improving fruit yield and quality. However, a full understanding of how differences in N availability/plant N status influence the transcriptome and metabolism underlying yield formation and quality remains elusive. Here, a combined...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608177/ https://www.ncbi.nlm.nih.gov/pubmed/36295807 http://dx.doi.org/10.3390/metabo12100905 |
Sumario: | Pre-harvest nitrogen (N) application has been proven effective for improving fruit yield and quality. However, a full understanding of how differences in N availability/plant N status influence the transcriptome and metabolism underlying yield formation and quality remains elusive. Here, a combined analysis of the morpho-physiological qualities, transcriptome, and metabolite of peach plants was performed under different nitrogen levels at fruit pit hardening (PH) and fruit expansion (FE). Nitrogen fertilizer directly affected the yield, fruit quality, and metabolites of peach at different growth stages. RNA-Seq was used to analyze the influence of N levels at PH and FE in peach. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the differentially expressed genes (DEGs) focused on flavonoid biosynthesis and secondary metabolite biosynthetic processes. The differential metabolites among the different treatments were mainly involved in flavonoid metabolism. Transcriptome analysis showed that applying different nitrogen fertilizers at different growth stages of peach mainly affected the synthesis of flavonoids in fruit. Overall, these results suggest that the impacts of pre-harvest N application on fruit yield and quality differ between developmental stages. This research provides a full understanding of the metabolic processes underlying fruit growth and development in peach, providing a theoretical basis for the improvement of nitrogen use efficiency in peach trees. |
---|