Cargando…
The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. An...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608236/ https://www.ncbi.nlm.nih.gov/pubmed/33719974 http://dx.doi.org/10.2174/1570159X19666210311104408 |
_version_ | 1784818731719852032 |
---|---|
author | Costa, Fabiano V. Rosa, Luiz V. Quadros, Vanessa A. de Abreu, Murilo S. Santos, Adair R. S. Sneddon, Lynne U. Kalueff, Allan V. Rosemberg, Denis B. |
author_facet | Costa, Fabiano V. Rosa, Luiz V. Quadros, Vanessa A. de Abreu, Murilo S. Santos, Adair R. S. Sneddon, Lynne U. Kalueff, Allan V. Rosemberg, Denis B. |
author_sort | Costa, Fabiano V. |
collection | PubMed |
description | The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) is a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish responses to painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from evolutionary and translational perspectives. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research. |
format | Online Article Text |
id | pubmed-9608236 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Bentham Science Publishers |
record_format | MEDLINE/PubMed |
spelling | pubmed-96082362022-11-07 The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns Costa, Fabiano V. Rosa, Luiz V. Quadros, Vanessa A. de Abreu, Murilo S. Santos, Adair R. S. Sneddon, Lynne U. Kalueff, Allan V. Rosemberg, Denis B. Curr Neuropharmacol Neurology The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) is a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish responses to painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from evolutionary and translational perspectives. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research. Bentham Science Publishers 2022-03-04 2022-03-04 /pmc/articles/PMC9608236/ /pubmed/33719974 http://dx.doi.org/10.2174/1570159X19666210311104408 Text en © 2022 Bentham Science Publishers https://creativecommons.org/licenses/by-nc/4.0/ This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
spellingShingle | Neurology Costa, Fabiano V. Rosa, Luiz V. Quadros, Vanessa A. de Abreu, Murilo S. Santos, Adair R. S. Sneddon, Lynne U. Kalueff, Allan V. Rosemberg, Denis B. The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title | The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title_full | The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title_fullStr | The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title_full_unstemmed | The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title_short | The Use of Zebrafish as a Non-traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns |
title_sort | use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608236/ https://www.ncbi.nlm.nih.gov/pubmed/33719974 http://dx.doi.org/10.2174/1570159X19666210311104408 |
work_keys_str_mv | AT costafabianov theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT rosaluizv theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT quadrosvanessaa theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT deabreumurilos theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT santosadairrs theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT sneddonlynneu theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT kalueffallanv theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT rosembergdenisb theuseofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT costafabianov useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT rosaluizv useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT quadrosvanessaa useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT deabreumurilos useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT santosadairrs useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT sneddonlynneu useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT kalueffallanv useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns AT rosembergdenisb useofzebrafishasanontraditionalmodelorganismintranslationalpainresearchtheknownsandtheunknowns |