Cargando…
Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement
Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the produc...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608257/ https://www.ncbi.nlm.nih.gov/pubmed/36295208 http://dx.doi.org/10.3390/ma15207141 |
_version_ | 1784818736395452416 |
---|---|
author | Denkena, Berend Schmidt, Carsten Schmitt, Christopher Kaczemirzk, Maximilian |
author_facet | Denkena, Berend Schmidt, Carsten Schmitt, Christopher Kaczemirzk, Maximilian |
author_sort | Denkena, Berend |
collection | PubMed |
description | Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the production of thermoplastic sandwich structures. Therefore, simple deposition experiments of thermoplastic PEEK/CF prepreg tapes on a PEI closed-cell foam were carried out. 3D surface profile measurements and peel tests according to DIN EN 28510-1 standard were used to investigate the joining area and bonding quality. The results show that a cohesive bond is formed between the deposited tapes and the foam core, however the foam structure in the area of the deposited tapes deforms in dependence of the process parameters, and increasingly with higher deposition temperatures. Due to the deformations that occur during tape deposition, the thermomechanical foam behavior under the TAFP process conditions was investigated in more detail in a subsequent study for an extensive parameter space using a simple experimental setup. Results show that for suitable process parameters, namely a short contact time and a high temperature, the foam deformation can be minimized with the simultaneous formation of a thin melting layer required for cohesive bonding. The inner foam core structure remains unaffected. |
format | Online Article Text |
id | pubmed-9608257 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96082572022-10-28 Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement Denkena, Berend Schmidt, Carsten Schmitt, Christopher Kaczemirzk, Maximilian Materials (Basel) Article Laser-based thermoplastic automated fiber placement (TAFP) is nowadays mainly used to produce pure carbon fiber-reinforced plastic (CFRP) structures. This paper investigates the feasibility of a novel application: The deposition of thermoplastic prepreg tapes onto a thermoplastic foam for the production of thermoplastic sandwich structures. Therefore, simple deposition experiments of thermoplastic PEEK/CF prepreg tapes on a PEI closed-cell foam were carried out. 3D surface profile measurements and peel tests according to DIN EN 28510-1 standard were used to investigate the joining area and bonding quality. The results show that a cohesive bond is formed between the deposited tapes and the foam core, however the foam structure in the area of the deposited tapes deforms in dependence of the process parameters, and increasingly with higher deposition temperatures. Due to the deformations that occur during tape deposition, the thermomechanical foam behavior under the TAFP process conditions was investigated in more detail in a subsequent study for an extensive parameter space using a simple experimental setup. Results show that for suitable process parameters, namely a short contact time and a high temperature, the foam deformation can be minimized with the simultaneous formation of a thin melting layer required for cohesive bonding. The inner foam core structure remains unaffected. MDPI 2022-10-13 /pmc/articles/PMC9608257/ /pubmed/36295208 http://dx.doi.org/10.3390/ma15207141 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Denkena, Berend Schmidt, Carsten Schmitt, Christopher Kaczemirzk, Maximilian Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title | Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title_full | Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title_fullStr | Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title_full_unstemmed | Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title_short | Experimental Investigation on the Use of a PEI Foam as Core Material for the In-Situ Production of Thermoplastic Sandwich Structures Using Laser-Based Thermoplastic Automated Fiber Placement |
title_sort | experimental investigation on the use of a pei foam as core material for the in-situ production of thermoplastic sandwich structures using laser-based thermoplastic automated fiber placement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608257/ https://www.ncbi.nlm.nih.gov/pubmed/36295208 http://dx.doi.org/10.3390/ma15207141 |
work_keys_str_mv | AT denkenaberend experimentalinvestigationontheuseofapeifoamascorematerialfortheinsituproductionofthermoplasticsandwichstructuresusinglaserbasedthermoplasticautomatedfiberplacement AT schmidtcarsten experimentalinvestigationontheuseofapeifoamascorematerialfortheinsituproductionofthermoplasticsandwichstructuresusinglaserbasedthermoplasticautomatedfiberplacement AT schmittchristopher experimentalinvestigationontheuseofapeifoamascorematerialfortheinsituproductionofthermoplasticsandwichstructuresusinglaserbasedthermoplasticautomatedfiberplacement AT kaczemirzkmaximilian experimentalinvestigationontheuseofapeifoamascorematerialfortheinsituproductionofthermoplasticsandwichstructuresusinglaserbasedthermoplasticautomatedfiberplacement |