Cargando…
A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling
Conventional photovoltaic (PV) grid-connected systems consist of a boost converter cascaded with an inverter, resulting in poor efficiency due to performing energy processing twice. Many pseudo DC-link inverters with single energy processing have been proposed to improve system efficiency and simpli...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608258/ https://www.ncbi.nlm.nih.gov/pubmed/36295921 http://dx.doi.org/10.3390/mi13101568 |
_version_ | 1784818736642916352 |
---|---|
author | Chang, Chien-Hsuan Cheng, Chun-An Cheng, Hung-Liang Chang, En-Chih |
author_facet | Chang, Chien-Hsuan Cheng, Chun-An Cheng, Hung-Liang Chang, En-Chih |
author_sort | Chang, Chien-Hsuan |
collection | PubMed |
description | Conventional photovoltaic (PV) grid-connected systems consist of a boost converter cascaded with an inverter, resulting in poor efficiency due to performing energy processing twice. Many pseudo DC-link inverters with single energy processing have been proposed to improve system efficiency and simplify circuits. However, their output voltage gain is limited by the non-ideal characteristics of the power diode, making them difficult to apply in high-output voltage applications. This paper proposes combining a boost converter with magnetic coupling and a full-bridge unfolding circuit to develop an inverter featuring high voltage-gain and high efficiency. According to the desired instantaneous output voltage, the high-gain boost converter and the full-bridge unfolding circuit are sequentially and respectively controlled by SPWM. A sinusoidal output voltage can be generated by performing energy processing only once, effectively improving the conversion efficiency. Magnetic coupling is adopted to increase the voltage gain of step-up, and the step-down function is realized by the full-bridge unfolding circuit to reduce conduction loss. Finally, a 500 W prototype was fabricated for the proposed high-gain inverter. The experimental results were used to verify the correctness of the theoretical analysis and the feasibility of the circuit structure. |
format | Online Article Text |
id | pubmed-9608258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96082582022-10-28 A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling Chang, Chien-Hsuan Cheng, Chun-An Cheng, Hung-Liang Chang, En-Chih Micromachines (Basel) Article Conventional photovoltaic (PV) grid-connected systems consist of a boost converter cascaded with an inverter, resulting in poor efficiency due to performing energy processing twice. Many pseudo DC-link inverters with single energy processing have been proposed to improve system efficiency and simplify circuits. However, their output voltage gain is limited by the non-ideal characteristics of the power diode, making them difficult to apply in high-output voltage applications. This paper proposes combining a boost converter with magnetic coupling and a full-bridge unfolding circuit to develop an inverter featuring high voltage-gain and high efficiency. According to the desired instantaneous output voltage, the high-gain boost converter and the full-bridge unfolding circuit are sequentially and respectively controlled by SPWM. A sinusoidal output voltage can be generated by performing energy processing only once, effectively improving the conversion efficiency. Magnetic coupling is adopted to increase the voltage gain of step-up, and the step-down function is realized by the full-bridge unfolding circuit to reduce conduction loss. Finally, a 500 W prototype was fabricated for the proposed high-gain inverter. The experimental results were used to verify the correctness of the theoretical analysis and the feasibility of the circuit structure. MDPI 2022-09-21 /pmc/articles/PMC9608258/ /pubmed/36295921 http://dx.doi.org/10.3390/mi13101568 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chang, Chien-Hsuan Cheng, Chun-An Cheng, Hung-Liang Chang, En-Chih A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title | A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title_full | A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title_fullStr | A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title_full_unstemmed | A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title_short | A High-Gain and High-Efficiency Photovoltaic Grid-Connected Inverter with Magnetic Coupling |
title_sort | high-gain and high-efficiency photovoltaic grid-connected inverter with magnetic coupling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608258/ https://www.ncbi.nlm.nih.gov/pubmed/36295921 http://dx.doi.org/10.3390/mi13101568 |
work_keys_str_mv | AT changchienhsuan ahighgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT chengchunan ahighgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT chenghungliang ahighgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT changenchih ahighgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT changchienhsuan highgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT chengchunan highgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT chenghungliang highgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling AT changenchih highgainandhighefficiencyphotovoltaicgridconnectedinverterwithmagneticcoupling |