Cargando…
A graph neural network framework based on preference-aware graph diffusion for recommendation
Transforming user check-in data into graph structure data is a popular and powerful way to analyze users' behaviors in the field of recommendation. Graph-based deep learning methods such as graph embeddings and graph neural networks have shown promising performance on the task of point-of-inter...
Autores principales: | Shu, Tao, Shi, Lei, Zhu, Chuangying, Liu, Xia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608317/ https://www.ncbi.nlm.nih.gov/pubmed/36311496 http://dx.doi.org/10.3389/fpsyt.2022.1012980 |
Ejemplares similares
-
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
Dynamic and Static Features-Aware Recommendation with Graph Neural Networks
por: Sun, Ninghua, et al.
Publicado: (2022) -
Session Recommendation Model Based on Context-Aware and Gated Graph Neural Networks
por: Li, Dan, et al.
Publicado: (2021) -
Degree-Aware Graph Neural Network Quantization
por: Fan, Ziqin, et al.
Publicado: (2023) -
Application of graph frequency attention convolutional neural networks in depression treatment response
por: Lu, Zihe, et al.
Publicado: (2023)