Cargando…
Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome
Purpose: The main goal of this study is to investigate the discrimination power of Grey Matter (GM) thickness connectome data between Multiple Sclerosis (MS) clinical profiles using statistical and Machine Learning (ML) methods. Materials and Methods: A dataset composed of 90 MS patients acquired at...
Autores principales: | Barile, Berardino, Ashtari, Pooya, Stamile, Claudio, Marzullo, Aldo, Maes, Frederik, Durand-Dubief, Françoise, Van Huffel, Sabine, Sappey-Marinier, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608344/ https://www.ncbi.nlm.nih.gov/pubmed/36313252 http://dx.doi.org/10.3389/frobt.2022.926255 |
Ejemplares similares
-
New multiple sclerosis lesion segmentation and detection using pre-activation U-Net
por: Ashtari, Pooya, et al.
Publicado: (2022) -
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
por: Marzullo, Aldo, et al.
Publicado: (2019) -
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
por: Ion-Mărgineanu, Adrian, et al.
Publicado: (2017) -
Editorial: Hot topic: Reducing operating times and complication rates through robot-assisted surgery
por: Cafolla, Daniele, et al.
Publicado: (2022) -
Artificial Intelligence Based Patient-Specific Preoperative Planning Algorithm for Total Knee Arthroplasty
por: Lambrechts, Adriaan, et al.
Publicado: (2022)