Cargando…
Multiple Sequence Long and Short Memory Network Model for Corner Gas Concentration Prediction on Coal Mine Workings
[Image: see text] To further improve the accuracy of recurrent neural network in predicting the gas concentration in the upper corner of the mine tunnel, this paper proposes a method to construct a gas concentration prediction model based on multiple sequence long and short memory network, consideri...
Autores principales: | Wang, Dengke, Zhao, Lizhen, Hao, Tianxuan, Du, Yang, Shen, Jianting, Tang, Yiju, Gong, Jiupeng, Li, Fan, Yan, Xiao, Wang, Zehua, Fang, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608403/ https://www.ncbi.nlm.nih.gov/pubmed/36312356 http://dx.doi.org/10.1021/acsomega.2c05188 |
Ejemplares similares
-
Corection to “Multiple
Sequence Long and Short
Memory Network Model for Corner Gas Concentration Prediction on Coal
Mine Workings”
por: Wang, Dengke, et al.
Publicado: (2022) -
Infrared Radiation
Characterization of Damaged Coal
Rupture Based on Stress Distribution and Energy
por: Hao, Tianxuan, et al.
Publicado: (2022) -
Gas Emergence Characteristics
of the Upper Corner
on the 215101 Mining Working Face of the Yue Nan Coal Mine
por: Chen, Xiangjun, et al.
Publicado: (2022) -
Experimental Study on the Cement-Based Materials Used
in Coal Mine Gas Extraction for Hole Sealing
por: Fu, Jianhua, et al.
Publicado: (2021) -
Early Warning of Gas Concentration in Coal Mines Production Based on Probability Density Machine
por: Cai, Yadong, et al.
Publicado: (2021)