Cargando…
A Decision-Making Strategy for Car Following Based on Naturalist Driving Data via Deep Reinforcement Learning
To improve the satisfaction and acceptance of automatic driving, we propose a deep reinforcement learning (DRL)-based autonomous car-following (CF) decision-making strategy using naturalist driving data (NDD). This study examines the traits of CF behavior using 1341 pairs of CF events taken from the...
Autores principales: | Li, Wenli, Zhang, Yousong, Shi, Xiaohui, Qiu, Fanke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608473/ https://www.ncbi.nlm.nih.gov/pubmed/36298405 http://dx.doi.org/10.3390/s22208055 |
Ejemplares similares
-
Deep Reinforcement Learning Based Decision Making for Complex Jamming Waveforms
por: Xu, Yuting, et al.
Publicado: (2022) -
Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving
por: Yang, Fan, et al.
Publicado: (2022) -
A model of naturalistic decision making in preference tests
por: Ksander, John, et al.
Publicado: (2021) -
Dynamic stock-decision ensemble strategy based on deep reinforcement learning
por: Yu, Xiaoming, et al.
Publicado: (2022) -
Reinforcement and Systemic Machine Learning for Decision Making
por: Kulkarni, Parag, et al.
Publicado: (2012)