Cargando…
Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications
Since the third scientific and technological revolution, electronic information technology has developed rapidly, and piezoelectric materials that can convert mechanical energy into electrical energy have become a research hotspot. Among them, piezoelectric polymers are widely used in various fields...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608489/ https://www.ncbi.nlm.nih.gov/pubmed/36297889 http://dx.doi.org/10.3390/polym14204311 |
_version_ | 1784818783119998976 |
---|---|
author | Bai, Yubin Liu, Yanan Lv, He Shi, Hongpu Zhou, Wen Liu, Yang Yu, Deng-Guang |
author_facet | Bai, Yubin Liu, Yanan Lv, He Shi, Hongpu Zhou, Wen Liu, Yang Yu, Deng-Guang |
author_sort | Bai, Yubin |
collection | PubMed |
description | Since the third scientific and technological revolution, electronic information technology has developed rapidly, and piezoelectric materials that can convert mechanical energy into electrical energy have become a research hotspot. Among them, piezoelectric polymers are widely used in various fields such as water treatment, biomedicine, and flexible sensors due to their good flexibility and weak toxicity. However, compared with ceramic piezoelectric materials, the piezoelectric properties of polymers are poor, so it is very important to improve the piezoelectric properties of polymers. Electrospinning technology can improve the piezoelectric properties of piezoelectric polymers by adjusting electrospinning parameters to control the piezoelectrically active phase transition of polymers. In addition, the prepared nanofibrous membrane is also a good substrate for supporting piezoelectric functional particles, which can also effectively improve the piezoelectric properties of polymers by doping particles. This paper reviews the piezoelectric properties of various electrospun piezoelectric polymer membranes, especially polyvinylidene fluoride (PVDF)-based electrospun nanofibrous membranes (NFs). Additionally, this paper introduces the various methods for increasing piezoelectric properties from the perspective of structure and species. Finally, the applications of NFs in the fields of biology, energy, and photocatalysis are discussed, and the future research directions and development are prospected. |
format | Online Article Text |
id | pubmed-9608489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96084892022-10-28 Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications Bai, Yubin Liu, Yanan Lv, He Shi, Hongpu Zhou, Wen Liu, Yang Yu, Deng-Guang Polymers (Basel) Review Since the third scientific and technological revolution, electronic information technology has developed rapidly, and piezoelectric materials that can convert mechanical energy into electrical energy have become a research hotspot. Among them, piezoelectric polymers are widely used in various fields such as water treatment, biomedicine, and flexible sensors due to their good flexibility and weak toxicity. However, compared with ceramic piezoelectric materials, the piezoelectric properties of polymers are poor, so it is very important to improve the piezoelectric properties of polymers. Electrospinning technology can improve the piezoelectric properties of piezoelectric polymers by adjusting electrospinning parameters to control the piezoelectrically active phase transition of polymers. In addition, the prepared nanofibrous membrane is also a good substrate for supporting piezoelectric functional particles, which can also effectively improve the piezoelectric properties of polymers by doping particles. This paper reviews the piezoelectric properties of various electrospun piezoelectric polymer membranes, especially polyvinylidene fluoride (PVDF)-based electrospun nanofibrous membranes (NFs). Additionally, this paper introduces the various methods for increasing piezoelectric properties from the perspective of structure and species. Finally, the applications of NFs in the fields of biology, energy, and photocatalysis are discussed, and the future research directions and development are prospected. MDPI 2022-10-13 /pmc/articles/PMC9608489/ /pubmed/36297889 http://dx.doi.org/10.3390/polym14204311 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bai, Yubin Liu, Yanan Lv, He Shi, Hongpu Zhou, Wen Liu, Yang Yu, Deng-Guang Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title | Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title_full | Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title_fullStr | Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title_full_unstemmed | Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title_short | Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications |
title_sort | processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9608489/ https://www.ncbi.nlm.nih.gov/pubmed/36297889 http://dx.doi.org/10.3390/polym14204311 |
work_keys_str_mv | AT baiyubin processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT liuyanan processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT lvhe processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT shihongpu processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT zhouwen processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT liuyang processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications AT yudengguang processesofelectrospunpolyvinylidenefluoridebasednanofiberstheirpiezoelectricpropertiesandseveralfantasticapplications |